期刊论文详细信息
BMC Genomics
Non-coding RNA gene families in the genomes of anopheline mosquitoes
Pantelis Topalis3  Dan Lawson1  Christos Louis4  Nikos Poulakakis5  James Allen1  Emmanuel Dialynas3  Elena Deligianni3  Vicky Dritsou2 
[1]European Bioinformatics Institute, Hinxton, UK
[2]Centre for Functional Genomics, University of Perugia, Perugia, Italy
[3]Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
[4]Department of Biology, University of Crete, Heraklion, Greece
[5]Natural History Museum of Crete, University of Crete, Heraklion, Greece
关键词: Whole Genome Sequencing;    tRNA;    Small nucleolar RNA;    Small nuclear RNA;    Ribosomal genes;    ncRNA;    microRNA;    Genome evolution;    Anopheles;   
Others  :  1090420
DOI  :  10.1186/1471-2164-15-1038
 received in 2014-08-18, accepted in 2014-11-19,  发布年份 2014
PDF
【 摘 要 】

Background

Only a small fraction of the mosquito species of the genus Anopheles are able to transmit malaria, one of the biggest killer diseases of poverty, which is mostly prevalent in the tropics. This diversity has genetic, yet unknown, causes. In a further attempt to contribute to the elucidation of these variances, the international “Anopheles Genomes Cluster Consortium” project (a.k.a. “16 Anopheles genomes project”) was established, aiming at a comprehensive genomic analysis of several anopheline species, most of which are malaria vectors. In the frame of the international consortium carrying out this project our team studied the genes encoding families of non-coding RNAs (ncRNAs), concentrating on four classes: microRNA (miRNA), ribosomal RNA (rRNA), small nuclear RNA (snRNA), and in particular small nucleolar RNA (snoRNA) and, finally, transfer RNA (tRNA).

Results

Our analysis was carried out using, exclusively, computational approaches, and evaluating both the primary NGS reads as well as the respective genome assemblies produced by the consortium and stored in VectorBase; moreover, the results of RNAseq surveys in cases in which these were available and meaningful were also accessed in order to obtain supplementary data, as were “pre-genomic era” sequence data stored in nucleic acid databases. The investigation included the identification and analysis, in most species studied, of ncRNA genes belonging to several families, as well as the analysis of the evolutionary relations of some of those genes in cross-comparisons to other members of the genus Anopheles.

Conclusions

Our study led to the identification of members of these gene families in the majority of twenty different anopheline taxa. A set of tools for the study of the evolution and molecular biology of important disease vectors has, thus, been obtained.

【 授权许可】

   
2014 Dritsou et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128160756410.pdf 3287KB PDF download
Figure 3. 60KB Image download
Figure 2. 272KB Image download
20150301032946191.pdf 831KB PDF download
【 图 表 】

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Beaty BJ, Prager DJ, James AA, Jacobs-Lorena M, Miller LH, Law JH, Collins FH, Kafatos FC: From Tucson to genomics and transgenics: the vector biology network and the emergence of modern vector biology. PLoS Negl Trop Dis 2009, 3:e343.
  • [2]Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, et al.: The genome sequence of the malaria mosquito Anopheles gambiae. Science 2002, 298:129-149.
  • [3]Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, et al.: The genome sequence of Drosophila melanogaster. Science 2000, 287:2185-2195.
  • [4]Neafsey DE, Christophides GK, Collins FH, Emrich SJ, Fontaine MF, Gelbart W, Hahn MW, Howell PI, Kafatos FC, Lawson D, Muskavitch MA, Waterhouse RM, Williams LJ, Besansky NJ: The Evolution of the Anopheles 16 Genomes Project. G3 (Bethesda) 2013, 3:1191-1194.
  • [5]Brenner S, Jacob F, Meselson M: An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 1961, 190:576-581.
  • [6]Gros F, Hiatt H, Gilbert W, Kurland CG, Risebrough RW, Watson JD: Unstable ribonucleic acid revealed by pulse labeling of Escherichia coli. Nature 1961, 190:581-585.
  • [7]Aronson AI, McCarthy BJ: Studies of E. coli ribosomal RNA and its degradation products. Biophys J 1961, 1:215-226.
  • [8]Crick FH: On protein synthesis. Symp Soc Exp Biol 1958, 12:138-163.
  • [9]Crick FH: Central dogma of molecular biology. Nature 1970, 227:561-563.
  • [10]Eddy SR: Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2001, 2:919-929.
  • [11]Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, Amon J, Arcà B, Arensburger P, Artemov G, Assour LA, Basseri H, Berlin A, Birren BW, Blandin SA, Brockman AI, Burkot TR, Burt A, Chan CS, Chauve C, Chiu JC, Christensen M, Costantini C, Davidson VLM, Deligianni E, Dottorini T, Dritsou V, Gabriel SB, Guelbeogo WM, Hall AB, et al.: Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 2014. Published online 27 November 2014 [DOI:10.1126/science.1258522]
  • [12]Megy K, Emrich SJ, Lawson D, Campbell D, Dialynas E, Hughes DS, Koscielny G, Louis C, Maccallum RM, Redmond SN, Sheehan A, Topalis P, Wilson D: VectorBase: improvements to a bioinformatics resource for invertebrate vector genomics. Nucleic Acids Res 2012, 40:D729-D734.
  • [13]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [14]Tautz D, Hancock JM, Webb DA, Tautz C, Dover GA: Complete sequences of the rRNA genes of Drosophila melanogaster. Mol Biol Evol 1988, 5:366-376.
  • [15]Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Edgar R, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Khovayko O, Landsman D, Lipman DJ, Madden TL, Maglott DR, Miller V, Ostell J, Pruitt KD, Schuler GD, Shumway M, Sequeira E, Sherry ST, Sirotkin K, Souvorov A, Starchenko G, Tatusov RL, et al.: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2008, 36:D13-D21.
  • [16]Artavanis-Tsakonas S, Schedl P, Tschudi C, Pirrotta V, Steward R, Gehring WJ: The 5S genes of Drosophila melanogaster. Cell 1977, 12:1057-1067.
  • [17]Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30:3059-3066.
  • [18]Darriba D, Taboada GL, Doallo R, Posada D: ModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012, 2012(9):772.
  • [19]Yang Z: Computational Molecular Evolution. Oxford & New York: Oxford University Press; 2006.
  • [20]Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP: MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012, 61:539-542.
  • [21]Stamatakis A: RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
  • [22]Rambaut A, Suchard MA, Xie W, Drummond AJ: MCMC Trace Analysis Tool. Version v1.6.0. http://beast.bio.ed.ac.uk/Tracer webcite 2013, accessed 25 July 2014
  • [23]Robinson D, Foulds LR: Comparison of phylogenetic trees. Math Biosci 1981, 53:131-147.
  • [24]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013, 30:2725-2729.
  • [25]Lowe TM, Eddy S: tRNAScan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25:955-964.
  • [26]Gruber AR, Findeiß S, Washietl S, Hofacker IL, Stadler PF: RNAz 2.0: improved noncoding RNA detection. Pac Symp Biocomput 2010, 15:69-79.
  • [27]Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR: Rfam: an RNA family database. Nucleic Acids Res 2003, 31:439-441.
  • [28]Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A: Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 2013, 41(Database issue):D226-D232.
  • [29]Kadri S, Hinman V, Benos PV: HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models. BMC Bioinformatics 2009, 10(Suppl 1):S35. BioMed Central Full Text
  • [30]Wu Y, Wei B, Liu H, Li T, Rayner S: MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics 2011, 12:107. BioMed Central Full Text
  • [31]Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34(Database issue):D140-D144.
  • [32]Kozomara A, Griffiths-Jones S: miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014, 42(Database issue):D68-D73.
  • [33]Lowe TM, Eddy S: 1999A computational screen for methylation guide snoRNAs in yeast. Science 1999, 283:1168-1171.
  • [34]Hertel J, Hofacker IL, Stadler PF: SnoReport: computational identification of snoRNAs with unknown targets. Bioinformatics 2008, 15:158-164.
  • [35]Glover DM, Hogness DS: A novel arrangement of the 18S and 28S sequences in a repeating unit of Drosophila melanogaster rDNA. Cell 1977, 10:167-176.
  • [36]White RL, Hogness DS: R loop mapping of the 18S and 28S sequences in the long and short repeating units of Drosophila melanogaster rDNA. Cell 1977, 10:177-192.
  • [37]Glover DM: Cloned segment of Drosophila melanogaster rDNA containing new types of sequence insertion. Proc Natl Acad Sci U S A 1977, 74:4932-4936.
  • [38]Jakubczak JL, Burke WD, Eickbush TH: Retrotransposable elements RI and R2 interrupt the rRNA genes of most insects. Proc Natl Acad Sci U S A 1991, 88:3295-3299.
  • [39]Besansky NJ, Paskewitz SM, Hamm DM, Collins FH: Distinct families of site-specific retrotransposons occupy identical positions in the rRNA genes of Anopheles gambiae. Mol Cell Biol 1992, 12:5102-5110.
  • [40]Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V: A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg 1987, 37:37-41.
  • [41]Wilkins EE, Howell PI, Benedict MQ: X and Y chromosome inheritance and mixtures of rDNA intergenic spacer regions in Anopheles gambiae. Insect Mol Biol 2007, 16:735-741.
  • [42]Bargues MD, Latorre JM, Morchon R, Simon F, Escosa R, Aranda C, Sainz S, Fuentes MV, Mas-Coma S: rDNA sequences of Anopheles species from the Iberian Peninsula and an evaluation of the 18S rRNA gene as phylogenetic marker in anophelinae. J Med Entomol 2006, 43:508-517.
  • [43]Sallum MAM, Schultz TR, Foster PG, Aronstein K, Wirtz RA, Wilkerson RC: Phylogeny of Anophelinae (Diptera: Culicidae) based on nuclear ribosomal and mitochondrial DNA sequences. Syst Entomol 2002, 27:361-382.
  • [44]Beebe NW, Cooper RD, Morrison DA, Ellis JT: A phylogenetic study of the Anopheles punctulatus group of malaria vectors comparing rDNA sequence alignments derived from the mitochondrial and nuclear small ribosomal subunits. Mol Phylogenet Evol 2000, 17:430-43618.
  • [45]Besansky NJ, Powell JR, Caccone A, Hamm DM, Scott JA, Collins FH: Molecular Phylogeny of the Anopheles gambiae Complex Suggests Genetic Introgression between Principal Malaria Vectors. PNAS 1994, 91:6885-6888.
  • [46]Bower JE, Cooper RD, Beebe NW: Internal repetition and intraindividual variation in the rDNA ITS1 of the anopheles punctulatus group (Diptera: Culicidae): multiple units and rates of turnover. J Mol Evol 2009, 68:66-79.
  • [47]Schultz J, Wolf M: ITS2 sequence-structure analysis in phylogenetics: a how-to manual for molecular systematics. Mol Phylogenet Evol 2009, 52:520-523.
  • [48]Shimada T: Distribution of split 5.8 s ribosomal RNA in Diptera. Insect Mol Biol 1992, 1:45-48.
  • [49]Jordan BR, Glover DM: 5.8 S and 2 S rDNA is located in the ‘transcribed spacer’ region between the 18 S and 26 S rRNA genes in Drosophila melanogaster. FEBS Lett 1977, 78:271-274.
  • [50]Lee J, Traut R: Proximity of 5.8S RNA-binding proteins and A-site proteins in yeast ribosomes inferred from cross-linking. J Biol Chem 1984, 259:9971-9974.
  • [51]Miller BR, Crabtree MB, Savage HM: Phylogenetic relationships of the Culicomorpha inferred from 18 s and 5.8 s ribosomal DNA sequences (Diptera: Nematocera). Insect Mol Biol 1997, 6:105-114.
  • [52]Collins FH, Paskewitz SM: A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insect Mol Biol 1996, 5:1-9.
  • [53]Besansky NJ: Complexities in the analysis of cryptic taxa within the genus Anopheles. Parassitologia 1999, 41:97-100.
  • [54]Scott JA, Brogdon WG, Collins FH: Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 1993, 49:520-529.
  • [55]Favia G, Lanfrancotti A, Spanos L, Sidén-Kiamos I, Louis C: Molecular characterization of ribosomal DNA polymorphisms discriminating among chromosomal forms of Anopheles gambiae s.s. Insect Mol Biol 2001, 10:19-23.
  • [56]Joshi D, Park MH, Saeung A, Choochote W, Min GS: Multiplex assay to identify Korean vectors of malaria. Mol Ecol Resour 2010, 10:748-750.
  • [57]Spirin AS: Ribosomes. New York: Kluwer; 1999.
  • [58]Rubin GM, Hogness DS: Effect of heat shock on the synthesis of low molecular weight RNAs in drosophilia: accumulation of a novel form of 5S RNA. Cell 1975, 6:207-213.
  • [59]Jacq B, Jourdan R, Jordan BR: Structure and processing of precursor 5 S RNA in Drosophila melanogaster. J Mol Biol 1977, 117:785-795.
  • [60]Tschudi C, Pirrotta V: Sequence and heterogeneity in the 5S RNA gene cluster of Drosophila melanogaster. Nucleic Acids Res 1980, 8:441-451.
  • [61]Gillespie JJ, Johnston JS, Cannone JJ, Gutell RR: Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. Insect Mol Biol 2006, 15:657-686.
  • [62]Louis C, Schedl P, Samal B, Worcel A: Chromatin structure of the 5S genes in Drosophila melanogaster. Cell 1980, 22:387-392.
  • [63]Wolffe AP: RNA polymerase III transcription. Curr Opin Cell Biol 1991, 3:461-466.
  • [64]Preiser PR, Levinger LF: In vitro processing of Drosophila melanogaster 5 S ribosomal RNA. 3′ end effects and requirement for internal domains of mature 5 S RNA. J Biol Chem 1991, 266:7509-7516.
  • [65]Preiser PR, Levinger LF: Drosophila 5 S RNA processing requires the 1–118 base pair and additional sequence proximal to the processing site. J Biol Chem 1991, 266:23602-23605.
  • [66]Preiser PR, Vasisht V, Birk A, Levinger LF: Poly(U)-binding protein inhibits Drosophila pre-5 S RNA 3′-exonuclease digestion. J Biol Chem 1993, 268:11553-11557.
  • [67]Gottesfeld JM, Bloomer LS: Nonrandom alignment of nucleosomes on 5S RNA genes of X. laevis. Cell 1980, 21:751-760.
  • [68]Lui L, Lowe T: Small nucleolar RNAs and RNA-guided post-transcriptional modification. Essays Biochem 2013, 54:53-77.
  • [69]Smith CM, Steitz JA: Sno storm in the nucleolus: new roles for myriad small RNPs. Cell 1997, 89:669-672.
  • [70]Schattner P, Decatur WA, Davis CA, Ares M Jr, Fournier MJ, Lowe TM: Genome-wide searching for pseudouridylation guide snoRNAs: analysis of the Saccharomyces cerevisiae genome. Nucleic Acids Res 2004, 32:4281-4296.
  • [71]St. Pierre SE, Ponting L, Stefancsik R, McQuilton P, The FlyBase Consortium: FlyBase 102 - advanced approaches to interrogating FlyBase. Nucleic Acids Res 2014, 42(D1):D780-D788.
  • [72]Long EO, Dawid IB: Repeated genes in eukaryotes. Ann Rev Biochem 1980, 49:727-764.
  • [73]Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH, Penswick JR, Zamir A: Structure of a ribonucleic acid. Science 1965, 147:1462-1465.
  • [74]Kubli E: The structure and function of tRNA genes of higher eukaryotes. Experientia 1981, 37:1-9.
  • [75]Kubli E: The Genetics of Transfer RNA in Drosophila. Adv Genet 1982, 21:123-172.
  • [76]Behura SK, Severson DW: Coadaptation of isoacceptor tRNA genes and codon usage bias for translation efficiency in Aedes aegypti and Anopheles gambiae. Insect Mol Biol 2011, 20:177-187.
  • [77]Coetzee M, Hunt RH, Wilkerson R, Della Torre A, Coulibaly MB, Besansky NJ: Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa 2013, 3619:246-274.
  • [78]Pombi M, Stump AD, Della Torre A, Besansky NJ: Variation in recombination rate across the X chromosome of Anopheles gambiae. Am J Trop Med Hyg 2006, 75:901-903.
  • [79]Bartel D: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
  • [80]Kim V, Han J, Siomi M: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009, 10:126-139.
  • [81]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
  • [82]Mead E, Tu Z: Cloning, characterization, and expression of microRNAs from the Asian malaria mosquito, Anopheles stephensi. BMC Genomics 2008, 9:244. BioMed Central Full Text
  • [83]Li S, Mead EA, Liang S, Tu Z: Direct sequencing and expression analysis of a large number of miRNAs in Aedes aegypti and a multi-species survey of novel mosquito miRNAs. BMC Genomics 2009, 10:581. BioMed Central Full Text
  • [84]Skalsky RL, Vanlandingham DL, Scholle F, Higgs S, Cullen BR: Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus. BMC Genomics 2010, 11:119. BioMed Central Full Text
  • [85]Biryukova I, Ye T, Levashina E: Transcriptome-wide analysis of microRNA expression in the malaria mosquito Anopheles gambiae. BMC Genomics 2014, 15:557. BioMed Central Full Text
  • [86]Winter F, Edaye S, Hüttenhofer A, Brunel C: Anopheles gambiae miRNAs as actors of defence reaction against Plasmodium invasion. Nucleic Acids Res 2007, 35:6953-6962.
  • [87]Griffiths-Jones S, Hui JH, Marco A, Ronshaugen M: MicroRNA evolution by arm switching. EMBO Rep 2011, 12:172-177.
  • [88]Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM, Murphy MR, O'Leary NA, Pujar S, Rajput B, Rangwala SH, Riddick LD, Shkeda A, Sun H, Tamez P, Tully RE, Wallin C, Webb D, Weber J, Wu W, DiCuccio M, Kitts P, Maglott DR, Murphy TD, Ostell JM: RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 2013, 42:D756-D763.
  • [89]Valadkhan S: snRNAs as the catalysts of pre-mRNA splicing. Curr Opin Chem Biol 2005, 9:603-608.
  • [90]Valadkhan S, Gunawardane LS: Role of small nuclear RNAs in eukaryotic gene expression. Essays Biochem 2013, 54:79-90.
  • [91]Seto AG, Kingston RE, Lau NC: The coming of age for piwi proteins. Mol Cell 2007, 26:603-609.
  • [92]Roberts RJ, Carneiro MO, Schatz MC: The advantages of SMRT sequencing. Genome Biol 2013, 14:405. BioMed Central Full Text
  文献评价指标  
  下载次数:8次 浏览次数:56次