期刊论文详细信息
BMC Microbiology
Zinc protects against shiga-toxigenic Escherichia coli by acting on host tissues as well as on bacteria
Benjamin B Werth2  Ryan M Reddinger1  Jackie E Broome2  John K Crane2 
[1]Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
[2]Department of Medicine, Division of Infectious Diseases, University at Buffalo, Room 317 Biomedical Research Bldg, 3435 Main St, Buffalo, NY 14214, USA
关键词: Copper;    Manganese;    Xanthine oxidase;    Diarrheal diseases;    SOS response;    Hemolytic-uremic syndrome;    O157:H7;    Enterohemorrhagic E. coli;   
Others  :  1140987
DOI  :  10.1186/1471-2180-14-145
 received in 2014-02-28, accepted in 2014-05-21,  发布年份 2014
PDF
【 摘 要 】

Background

Zinc supplements can treat or prevent enteric infections and diarrheal disease. Many articles on zinc in bacteria, however, highlight the essential nature of this metal for bacterial growth and virulence, suggesting that zinc should make infections worse, not better. To address this paradox, we tested whether zinc might have protective effects on intestinal epithelium as well as on the pathogen.

Results

Using polarized monolayers of T84 cells we found that zinc protected against damage induced by hydrogen peroxide, as measured by trans-epithelial electrical resistance. Zinc also reduced peroxide-induced translocation of Shiga toxin (Stx) across T84 monolayers from the apical to basolateral side. Zinc was superior to other divalent metals to (iron, manganese, and nickel) in protecting against peroxide-induced epithelial damage, while copper also showed a protective effect.

The SOS bacterial stress response pathway is a powerful regulator of Stx production in STEC. We examined whether zinc’s known inhibitory effects on Stx might be mediated by blocking the SOS response. Zinc reduced expression of recA, a reliable marker of the SOS. Zinc was more potent and more efficacious than other metals tested in inhibiting recA expression induced by hydrogen peroxide, xanthine oxidase, or the antibiotic ciprofloxacin. The close correlation between zinc’s effects on recA/SOS and on Stx suggested that inhibition of the SOS response is one mechanism by which zinc protects against STEC infection.

Conclusions

Zinc’s ability to protect against enteric bacterial pathogens may be the result of its combined effects on host tissues as well as inhibition of virulence in some pathogens. Research focused solely on the effects of zinc on pathogenic microbes may give an incomplete picture by failing to account for protective effects of zinc on host epithelia.

【 授权许可】

   
2014 Crane et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325173513174.pdf 2143KB PDF download
Figure 7. 164KB Image download
Figure 6. 63KB Image download
Figure 5. 84KB Image download
Figure 4. 86KB Image download
Figure 3. 59KB Image download
Figure 2. 61KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Bhutta ZA, Bird SM, Black RE, Brown KH, Gardner JM, Hidayat A, Khatun F, Martorell R, Ninh NX, Penny ME, Rosado JL, Roy SK, Ruel M, Sazawal S, Shankar A: Therapeutic effects of oral zinc in acute and persistent diarrhea in children in developing countries: pooled analysis of randomized controlled trials. Am J Clin Nutr 2000, 72:1516-1522.
  • [2]Sazawal S, Black R, Bhan M, Bhandari N, Sinha A, Jalla S: Zinc supplementation in young children with acute diarrhea in India. N Engl J Med 1995, 333:839-844.
  • [3]Patel A, Mamtani M, Dibley MJ, Badhoniya N, Kulkarni H: Therapeutic value of zinc supplementation in acute and persistent diarrhea: a systematic review. PLoS One 2010, 5:e10386.
  • [4]Gabbianelli R, Scotti R, Ammendola S, Petrarca P, Nicolini L, Battistoni A: Role of ZnuABC and ZinT in Escherichia coli O157:H7 zinc acquisition and interaction with epithelial cells. BMC Microbiol 2011, 11:36.
  • [5]Porcheron G, Garenaux A, Proulx J, Sabri M, Dozois CM: Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol 2013, 3:90.
  • [6]Prasad AS: Zinc: mechanisms of host defense. J Nutr 2007, 137:1345-1349.
  • [7]Karlsen TH, Sommerfelt H, Klomstad S, Andersen PK, Strand TA, Ulvik RJ, Åhrén C, Grewal HMS: Intestinal and systemic immune responses to an oral cholera toxoid B subunit whole-cell vaccine administered during zinc supplementation. Infect Immun 2003, 71:3909-3913.
  • [8]Wellinghausen N, Martin M, Rink L: Zinc inhibits interleukin-1-dependent T cell stimulation. Eur J Immunol 1997, 27:2529-2535.
  • [9]Schlesinger L, Arevalo M, Arredondo S, Lonnerdal B, Stekel A: Zinc supplementation impairs monocyte function. Acta Paediatr 1993, 82:734-738.
  • [10]Provinciali M, Montenovo A, Stefano G, Colombo M, Daghetta L, Cairati M, Veroni C, Cassino R, Torre FD, Fabris N: Effect of zinc or zinc plus arginine supplementation on antibody titre and lymphocyte subsets after influenza vaccination in elderly subjects: a randomized controlled trial. Age Ageing 1998, 27:715-722.
  • [11]Crane J, Naeher T, Shulgina I, Zhu C, Boedeker E: Effect of zinc in enteropathogenic Escherichia coli infection. Infect Immun 2007, 75:5974-5984.
  • [12]Crane JK, Byrd IW, Boedeker EC: Virulence inhibition by zinc in shiga-toxigenic escherichia coli. Infect Immun 2011, 79:1696.
  • [13]Medeiros P, Bolick D, Roche J, Noronha F, Pinheiro C, Kolling G, Guerrant R: The micronutrient zinc inhibits EAEC strain 042 adherence, biofilm formation, virulence gene expression and epithelial cytokine responses benefiting the infected host. Virulence 2013, 4:624-633.
  • [14]Mukhopadhyay S, Linstedt AD: Manganese blocks intracellular trafficking of shiga toxin and protects against shiga toxicosis. Science 2012, 335:332-335.
  • [15]Frank C, Werber D, Cramer JP, Askar M, Faber M, Heiden M, Bernard H, Fruth A, Prager R, Spode A, Wadl M, Zoufaly A, Jordan S, Kemper MJ, Follin P, Mueller L, King LA, Rosner B, Buchholz U, Stark K, Krause G: Epidemic profile of shiga-toxin-producing escherichia coli O104:H4 outbreak in Germany. N Eng J Med 2011, 365:1771-1780.
  • [16]Buchholz U, Bernard H, Werber D, Bohmer MM, Remschmidt C, Wilking H, Delere Y, an der Heiden M, Adlhoch C, Dreesman J, Ehlers J, Ethelberg S, Faber M, Frank C, Fricke G, Greiner M, Hohle M, Ivarsson S, Jark U, Kirchner M, Koch J, Krause G, Luber P, Rosner B, Stark K, Kuhne M: German outbreak of Escherichia coli O104:H4 associated with sprouts. N Engl J Med 2011, 365:1763-1770.
  • [17]Gould LH, Mody RK, Ong KL, Clogher P, Cronquist AB, Garman KN, Lathrop S, Medus C, Spina NL, Webb TH, White PL, Wymore K, Gierke RE, Mahon BE, Griffin PM: Increased recognition of non-O157 Shiga toxin-producing Escherichia coli infections in the United States during 2000–2010: epidemiologic features and comparison with E. coli O157 infections. Foodborne Pathog Dis 2013, 10:453-460.
  • [18]Kimmitt P, Harwood C, Barer M: Toxin gene expression by Shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. Emerg Infect Dis 2000, 6:458-466.
  • [19]Zhang X, McDaniel A, Wolf L, Keusch G, Waldor M, Acheson D: Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J Infect Dis 2000, 181:664-670.
  • [20]Colic E, Dieperink H, Titlestad K, Tepel M: Management of an acute outbreak of diarrhoea-associated haemolytic uraemic syndrome with early plasma exchange in adults from southern Denmark: an observational study. Lancet 2011, 378:1089-1093.
  • [21]Andreoli SP, Trachtman H, Acheson DWK, Siegler RL, Obrig TG: Hemolytic uremic syndrome: epidemiology, pathophysiology, and therapy. Pediatr Nephrol 2002, 17:293-298.
  • [22]Wagner PL, Acheson DWK, Waldor MK: Human neutrophils and their products induce shiga toxin production by enterohemorrhagic escherichia coli. Infect Immun 2001, 69:1934-1937.
  • [23]Crane JK, Naeher TM, Broome JE, Boedeker EC: Role of host xanthine oxidase in infection Due to enteropathogenic and shiga-toxigenic escherichia coli. Infect Immun 2013, 81:1129-1139.
  • [24]Mellies JL, Haack KR, Galligan DC: SOS regulation of the type III secretion system of enteropathogenic Escherichia coli. J Bacteriol 2007, 189:2863.
  • [25]Mellies JL, Elliott SJ, Sperandio V, Donnenberg MS, Kaper JB: The Per regulon of enteropathogenic Escherichia coli : identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol Microbiol 1999, 33:296-306.
  • [26]Haack KR, Robinson CL, Miller KJ, Fowlkes JW, Mellies JL: Interaction of Ler at the LEE5 (tir) operon of enteropathogenic Escherichia coli. Infect Immun 2003, 71:384-392.
  • [27]Mellies J, Thomas K, Turvey M, Evans N, Crane J, Boedeker EC, Benison G: Zinc-induced envelope stress diminishes type III secretion in enteropathogenic Escherichia coli. BMC Microbiol 2012, 12:123.
  • [28]Acheson DWK, Moore R, De Breucker S, Lincicome L, Jacewicz M, Skutelsky E, Keusch GT: Translocation of Shiga toxin across polarized intestinal cells in tissue culture. Infect Immun 1996, 64:3294-3300.
  • [29]In J, Lukyanenko V, Foulke-Abel J, Hubbard AL, Delannoy M, Hansen A-M, Kaper JB, Boisen N, Nataro JP, Zhu C: Serine protease EspP from enterohemorrhagic escherichia coli is sufficient to induce shiga toxin macropinocytosis in intestinal epithelium. PLoS One 2013, 8:e69196.
  • [30]Malyukova I, Murray KF, Zhu C, Boedeker E, Kane A, Patterson K, Peterson JR, Donowitz M, Kovbasnjuk O: Macropinocytosis in Shiga toxin 1 uptake by human intestinal epithelial cells and transcellular transcytosis. Am J Physiol 2008, 296:G78-G92.
  • [31]Griffith KL, Jr Wolf RE: Measuring beta-galactosidase activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays. Biochem Biophys Res Commun 2002, 290:397-402.
  • [32]Wang N, Wang G, Hao J, Ma J, Wang Y, Jiang X, Jiang H: Curcumin ameliorates hydrogen peroxide-induced epithelial barrier disruption by upregulating heme oxygenase-1 expression in human intestinal epithelial cells. Dig Dis Sci 2012, 57:1792-1801.
  • [33]Yu W, Beaudry S, Negoro H, Boucher I, Tran M, Kong T, Denker BM: H2O2 activates G protein, α 12 to disrupt the junctional complex and enhance ischemia reperfusion injury. Proc Natl Acad Sci USA 2012, 109:6680-6685.
  • [34]Rodriguez P, Darmon N, Chappuis P, Candalh C, Blaton MA, Bouchaud C, Heyman M: Intestinal paracellular permeability during malnutrition in guinea pigs: effect of high dietary zinc. Gut 1996, 39:416-422.
  • [35]Jepson MA: Disruption of epithelial barrier function by H2O2: distinct responses of Caco-2 and Madin-Darby canine kidney (MDCK) strains. Cell Mol Biol (Noisy-le-Grand) 2003, 49:101-112.
  • [36]Peng L, He Z, Chen W, Holzman I, Lin J: Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr Res 2007, 61:37-41.
  • [37]Velazquez OC, Lederer HM, Rombeau JL: Butyrate and the colonocyte. Production, absorption, metabolism, and therapeutic implications. Adv Exp Med Biol 1997, 427:123-134.
  • [38]Bielaszewska M, Idelevich EA, Zhang W, Bauwens A, Schaumburg F, Mellmann A, Peters G, Karch H: Effects of antibiotics on shiga toxin 2 production and bacteriophage induction by epidemic escherichia coli O104:H4 strain. Antimicrob Agents Chemother 2012, 56:3277-3282.
  • [39]Spears K, Roe A, Gally D: A comparison of enteropathogenic and enterohaemorraghic Escherichia coli pathogenesis. FEMS Microbiol Lett 2006, 255:187-202.
  • [40]Elliott S, Sperandio V, Giron J, Shin S, Mellies J, Wainwright L, Jutcheson S, McDaniel T, Kaper J: The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 2000, 68:6115-6126.
  • [41]Sperandio V, Mellies JL, Nguyen W, Shin S, Kaper JB: Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc Natl Acad Sci USA 1999, 96:15196-15201.
  • [42]Łoś JM, Łoś M, Węgrzyn A, Węgrzyn G: Hydrogen peroxide-mediated induction of the Shiga toxin-converting lambdoid prophage ST2-8624 in Escherichia coli O157:H7. FEMS Immunol Med Microbiol 2010, 58:322-329.
  • [43]Vareille M, de Sablet T, Hindré T, Martin C, Gobert A: Nitric oxide inhibits Shiga-toxin synthesis by enterohemorrhagic Escherichia coli. Proc Natl Acad Sci USA 2007, 104:10199-10204.
  • [44]Fuchs S, Muhldorfer I, Donohue-Rolfe A, Kerenyi M, Emody L, Alexiev R, Nenkov P, Hacker J: Influence of RecA on in vivo virulence and Shiga toxin 2 production in Escherichia coli pathogens. Microb Pathog 1999, 27:13-23.
  • [45]Kaneko Y, Thoendel M, Olakanmi O, Britigan B, Singh P: The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 2007, 117:877-888.
  • [46]DuPont H, Sullivan P, Pickering L, Haynes G, Ackerman P: Symptomatic treatment of diarrhea with bismuth subsalicylate among students attending a Mexican university. Gastroenterology 1977, 73:715-718.
  • [47]Johnson P, Ericsson C, DuPont H, Morgan D, Bitsura J, Wood L: Comparison of loperamide with bismuth subsalicylate for the treatment of acute travelers’ diarrhea. JAMA 1986, 255:757-760.
  • [48]Xie Y, He Y, Irwin PL, Jin T, Shi X: Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 2011, 77:2325-2331.
  • [49]Mellies JL, Barron AMS, Carmona AM: Enteropathogenic and Enterohemorrhagic Escherichia coli Virulence Gene Regulation. Infect Immun 2007, 75:4199-4210.
  • [50]Outten C, O’Halloran T: Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 2001, 292:2488-2491.
  • [51]Outten CE, Outten FW, O’Halloran TV: DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in escherichia coli. J Biol Chem 1999, 274:37517-37524.
  • [52]Yamamoto K, Ishihama A: Transcriptional response of escherichia coli to external zinc. J Bacteriol 2005, 187:6333-6340.
  • [53]Torres AG, Payne SM: Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 1997, 23:825-833.
  • [54]Lim J, Lee KM, Kim SH, Kim Y, Kim SH, Park W, Park S: YkgM and ZinT proteins are required for maintaining intracellular zinc concentration and producing curli in enterohemorrhagic Escherichia coli (EHEC) O157:H7 under zinc deficient conditions. Int J Food Microbiol 2011, 149:159-170.
  • [55]Bower S, Rosenthal KS: The bacterial cell wall: the armor, artillery, and achilles heel. Infect Dis Clin Pract 2006, 14:309-317. 310.1097/1001.idc.0000240862.0000274564.0000240857
  • [56]Vogt SL, Raivio TL: Just scratching the surface: an expanding view of the Cpx envelope stress response. FEMS Microbiol Lett 2012, 326:2-11.
  • [57]Gielda LM, DiRita VJ: Zinc competition among the intestinal microbiota. MBio 2012, 3:1-7.
  • [58]Bratz K, Golz G, Riedel C, Janczyk P, Nockler K, Alter T: Inhibitory effect of high-dosage zinc oxide dietary supplementation on Campylobacter coli excretion in weaned piglets. J Appl Microbiol 2013, 115:1194-1202.
  • [59]Zhang P, Carlsson M, Schneider N, Duhamel G: Minimal prophylactic concentration of dietarry zinc compounds in a mouse model off swine dysentery. Anim Health Res Rev 2001, 2:67-74.
  • [60]Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E: Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr 2003, 133:4077-4082.
  • [61]Botella H, Peyron P, Levillain F, Poincloux R, Poquet Y, Brandli I, Wang C, Tailleux L, Tilleul S, Charrière GM, Waddell Simon J, Foti M, Lugo-Villarino G, Gao Q, Maridonneau-Parini I, Butcher Philip D, Castagnoli Paola R, Gicquel B, de Chastellier C, Neyrolles O: Mycobacterial P1-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 2011, 10:248-259.
  • [62]Giblin LJ, Chang CJ, Bentley AF, Frederickson C, Lippard SJ, Frederickson CJ: Zinc-secreting paneth cells studied by ZP fluorescence. J Histochem Cytochem 2006, 54:311-316.
  • [63]Dinsdale D: Ultrastructural localization of zinc and calcium within the granules of rat Paneth cells. J Histochem Cytochem 1984, 32:139-145.
  • [64]Patel A, Dibley M, Mamtani M, Badhoniya N, Kulkarni H: Influence of zinc supplementation in acute diarrhea differs by the isolated organism. Int J Pediatr 2010, 2010:671587.
  • [65]Gaston MA, Pellino CA, Weiss AA: Failure of manganese to protect from shiga toxin. PLoS One 2013, 8:e69823.
  • [66]Mukhopadhyay S, Redler B, Linstedt AD: Shiga toxin–binding site for host cell receptor GPP130 reveals unexpected divergence in toxin-trafficking mechanisms. Mol Biol Cell 2013, 24:2311-2318.
  • [67]Beltrametti F, Kresse AU, Guzmán CA: Transcriptional regulation of the esp genes of enterohemorrhagic escherichia coli. J Bacteriol 1999, 181:3409-3418.
  • [68]Moreno JA, Yeomans EC, Streifel KM, Brattin BL, Taylor RJ, Tjalkens RB: Age-dependent susceptibility to manganese-induced neurological dysfunction. Toxicol Sci 2009, 112:394.
  • [69]Imamovic L, Muniesa M: Characterizing RecA-independent induction of shiga toxin2-encoding phages by EDTA treatment. PLoS One 2012, 7:e32393.
  • [70]Rao RK, Baker RD, Baker SS, Gupta A, Holycross M: Oxidant-induced disruption of intestinal epithelial barrier function: role of protein tyrosine phosphorylation. Am J Physiol 1997, 273:G812-G823.
  • [71]Perez LM, Milkiewicz P, Ahmed-Choudhury J, Elias E, Ochoa JE, Sanchez Pozzi EJ, Coleman R, Roma MG: Oxidative stress induces actin-cytoskeletal and tight-junctional alterations in hepatocytes by a Ca2+ -dependent, PKC-mediated mechanism: protective effect of PKA. Free Radic Biol Med 2005, 40:2005-2017.
  • [72]Demehri F, Barrett M, Ralls M, Miyasaka E, Feng Y, Teitelbaum D: Intestinal epithelial cell apoptosis and loss of barrier function in the setting of altered microbiota with enteral nutrient deprivation. Front Cell Microbiol 2013, 3:1-15.
  • [73]Bleich M, Shan Q, Himmerkus N: Calcium regulation of tight junction permeability. Ann N Y Acad Sci 2012, 1258:93-99.
  • [74]Ma TY, Tran D, Hoa N, Nguyen D, Merryfield M, Tarnawski A: Mechanism of extracellular calcium regulation of intestinal epithelial tight junction permeability: role of cytoskeletal involvement. Microsc Res Tech 2000, 51:156-168.
  • [75]Finamore A, Massimi M, Conti Devirgiliis L, Mengheri E: Zinc deficiency induces membrane barrier damage and increases neutrophil transmigration in Caco-2 cells. J Nutr 2008, 138:1664-1670.
  • [76]Wang X, Valenzano MC, Mercado JM, Zurbach EP, Mullin JM: Zinc supplementation modifies tight junctions and alters barrier function of CACO-2 human intestinal epithelial layers. Dig Dis Sci 2013, 58:77-87.
  • [77]Moran JR, Lewis JC: The effects of severe zinc deficiency on intestinal permeability: an ultrastructural study. Pediatr Res 1985, 19:968-973.
  • [78]Warnes SL, Caves V, Keevil CW: Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Environ Microbiol 2012, 14:1730-1743.
  • [79]Wilks SA, Michels H, Keevil CW: The survival of Escherichia coli O157 on a range of metal surfaces. Int J Food Microbiol 2005, 105:445-454.
  文献评价指标  
  下载次数:64次 浏览次数:50次