期刊论文详细信息
BMC Cell Biology
Newborn pig trachea cell line cultured in air-liquid interface conditions allows a partial in vitro representation of the porcine upper airway tissue
François Meurens1  Gaëlle Simon3  Pierre-Yves Sizaret4  Michel Olivier2  Mario Delgado-Ortega2 
[1] Vaccine and Infectious Disease Organization-InterVac, University of Saskatchewan, 120 Veterinary Road, Saskatoon S7N 5E3 Saskatchewan, Canada;UMR1282 Infectiologie et Santé Publique, Université François Rabelais, Tours 37000, France;European University of Brittany, Rennes 35000, France;Département des microscopies, plate-forme R.I.O de microscopie électronique, Université François Rabelais, Tours 37000, France
关键词: Trachea;    Air-liquid interface;    Differentiation;    Epithelial cell;    Pig;   
Others  :  854980
DOI  :  10.1186/1471-2121-15-14
 received in 2013-12-17, accepted in 2014-04-23,  发布年份 2014
PDF
【 摘 要 】

Background

The domestic pig is an excellent animal model to study human microbial diseases due to its similarity to humans in terms of anatomy, physiology, and genetics. We assessed the suitability of an in vitro air-liquid interface (ALI) culture system for newborn pig trachea (NPTr) cells as a practical tool for analyzing the immune response of respiratory epithelial cells to aggressors. This cell line offers a wide microbial susceptibility spectrum to both viruses and bacteria. The purpose of our study was to evaluate and characterize diverse aspects of cell differentiation using different culture media. After the NPTr cells reached confluence, the apical medium was removed and the cells were fed by medium from the basal side.

Results

We assessed the cellular layer’s capacity to polarize and differentiate in ALI conditions. Using immunofluorescence and electronic microscopy we evaluated the presence of goblet and ciliated cells, the epithelial junction organization, and the transepithelial electrical resistance. We found that the cellular layer develops a variable density of mucus producing cells and acquires a transepithelial resistance. We also identified increased development of cellular junctions over the culture period. Finally, we observed variable expression of transcripts associated to proteins such as keratin 8, mucins (MUC1, MUC2, and MUC4), occludin, and villin 1.

Conclusions

The culture of NPTr cells in ALI conditions allows a partial in vitro representation of porcine upper airway tissue that could be used to investigate some aspects of host/respiratory pathogen interactions.

【 授权许可】

   
2014 Delgado-Ortega et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140722023844751.pdf 2930KB PDF download
54KB Image download
136KB Image download
57KB Image download
Figure 1. 71KB Image download
161KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Aigner B, Renner S, Kessler B, Klymiuk N, Kurome M, Wunsch A, Wolf E: Transgenic pigs as models for translational biomedical research. J Mol Med 2010, 88(7):653-664.
  • [2]Fairbairn L, Kapetanovic R, Sester DP, Hume DA: The mononuclear phagocyte system of the pig as a model for understanding human innate immunity and disease. J Leukoc Biol 2011, 6:855-871.
  • [3]Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V: The pig: a model for human infectious diseases. Trends Microbiol 2012, 20(1):50-57.
  • [4]Swindle MM, Makin A, Herron AJ, Clubb FJ Jr, Frazier KS: Swine as models in biomedical research and toxicology testing. Vet Pathol 2012, 49(2):344-356.
  • [5]Ferrari M, Scalvini A, Losio MN, Corradi A, Soncini M, Bignotti E, Milanesi E, Ajmone-Marsan P, Barlati S, Bellotti D, Tonelli M: Establishment and characterization of two new pig cell lines for use in virological diagnostic laboratories. J Virol Methods 2003, 107(2):205-212.
  • [6]Auger E, Deslandes V, Ramjeet M, Contreras I, Nash JH, Harel J, Gottschalk M, Olivier M, Jacques M: Host-pathogen interactions of Actinobacillus pleuropneumoniae with porcine lung and tracheal epithelial cells. Infect Immun 2009, 77(4):1426-1441.
  • [7]Massin P, Kuntz-Simon G, Barbezange C, Deblanc C, Oger A, Marquet-Blouin E, Bougeard S, van der Werf S, Jestin V: Temperature sensitivity on growth and/or replication of H1N1, H1N2 and H3N2 influenza a viruses isolated from pigs and birds in mammalian cells. Vet Microbiol 2010, 142(3–4):232-241.
  • [8]Bateman AC, Karasin AI, Olsen CW: Differentiated swine airway epithelial cell cultures for the investigation of influenza A virus infection and replication. Influenza Other Respir Viruses 2013, 7(2):139-150.
  • [9]Khoufache K, Cabaret O, Farrugia C, Rivollet D, Alliot A, Allaire E, Cordonnier C, Bretagne S, Botterel F: Primary in vitro culture of porcine tracheal epithelial cells in an air-liquid interface as a model to study airway epithelium and Aspergillus fumigatus interactions. Med Mycol 2010, 48(8):1049-1055.
  • [10]Gruenert DC, Finkbeiner WE, Widdicombe JH: Culture and transformation of human airway epithelial cells. Am J Physiol 1995, 268(3 Pt 1):L347-360.
  • [11]Ioannidis I, Ye F, McNally B, Willette M, Flano E: Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells. J Virol 2013, 87(6):3261-3270.
  • [12]De Jong PM, Van Sterkenburg MA, Hesseling SC, Kempenaar JA, Mulder AA, Mommaas AM, Dijkman JH, Ponec M: Ciliogenesis in human bronchial epithelial cells cultured at the air-liquid interface. Am J Respir Cell Mol Biol 1994, 10(3):271-277.
  • [13]Prytherch Z, Job C, Marshall H, Oreffo V, Foster M, BeruBe K: Tissue-Specific stem cell differentiation in an in vitro airway model. Macromol Biosci 2011, 11(11):1467-1477.
  • [14]Jorissen M, Van der Schueren B, Van den Berghe H, Cassiman JJ: Contribution of in vitro culture methods for respiratory epithelial cells to the study of the physiology of the respiratory tract. Eur Respir J 1991, 4(2):210-217.
  • [15]Whitcutt MJ, Adler KB, Wu R: A biphasic chamber system for maintaining polarity of differentiation of cultured respiratory tract epithelial cells. In Vitro Cell Dev Biol 1988, 24(5):420-428.
  • [16]Wu R, Nolan E, Turner C: Expression of tracheal differentiated functions in serum-free hormone-supplemented medium. J Cell Physiol 1985, 125(2):167-181.
  • [17]Kim KC, Rearick JI, Nettesheim P, Jetten AM: Biochemical characterization of mucous glycoproteins synthesized and secreted by hamster tracheal epithelial cells in primary culture. J Biol Chem 1985, 260(7):4021-4027.
  • [18]Lee TC, Wu R, Brody AR, Barrett JC, Nettesheim P: Growth and differentiation of hamster tracheal epithelial cells in culture. Exp Lung Res 1984, 6(1):27-45.
  • [19]Clark AB, Randell SH, Nettesheim P, Gray TE, Bagnell B, Ostrowski LE: Regulation of ciliated cell differentiation in cultures of rat tracheal epithelial cells. Am J Respir Cell Mol Biol 1995, 12(3):329-338.
  • [20]Goris K, Uhlenbruck S, Schwegmann-Wessels C, Kohl W, Niedorf F, Stern M, Hewicker-Trautwein M, Bals R, Taylor G, Braun A, Bicker G, Kietzmann M, Herrler G: Differential sensitivity of differentiated epithelial cells to respiratory viruses reveals different viral strategies of host infection. J Virol 2009, 83(4):1962-1968.
  • [21]Nossol C, Diesing AK, Walk N, Faber-Zuschratter H, Hartig R, Post A, Kluess J, Rothkotter HJ, Kahlert S: Air-liquid interface cultures enhance the oxygen supply and trigger the structural and functional differentiation of intestinal porcine epithelial cells (IPEC). Histochem Cell Biol 2011, 136(1):103-115.
  • [22]Stewart CE, Torr EE, Mohd Jamili NH, Bosquillon C, Sayers I: Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. J Allergy 2012, 2012:943982.
  • [23]Sachs LA, Finkbeiner WE, Widdicombe JH: Effects of media on differentiation of cultured human tracheal epithelium. In Vitro Cell Dev Biol Anim 2003, 39(1–2):56-62.
  • [24]Nygard AB, Jorgensen CB, Cirera S, Fredholm M: Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol Biol 2007, 8:67. BioMed Central Full Text
  • [25]Meurens F, Berri M, Auray G, Melo S, Levast B, Virlogeux-Payant I, Chevaleyre C, Gerdts V, Salmon H: Early immune response following Salmonella enterica subspecies enterica serovar Typhimurium infection in porcine jejunal gut loops. Vet Res 2009, 40(1):5.
  • [26]Kirchhoff J, Uhlenbruck S, Goris K, Keil GM, Herrler G: Three viruses of the bovine respiratory disease complex apply different strategies to initiate infection. Vet Res 2014, 45(1):20. BioMed Central Full Text
  • [27]Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA: Mucins in the mucosal barrier to infection. Mucosal Immunol 2008, 1(3):183-197.
  • [28]Chopra DP: Squamous metaplasia in organ cultures of vitamin a-deficient hamster trachea: cytokinetic and ultrastructural alterations. J Natl Cancer Inst 1982, 69(4):895-905.
  • [29]Gray TE, Guzman K, Davis CW, Abdullah LH, Nettesheim P: Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol 1996, 14(1):104-112.
  • [30]Jetten AM, Brody AR, Deas MA, Hook GE, Rearick JI, Thacher SM: Retinoic acid and substratum regulate the differentiation of rabbit tracheal epithelial cells into squamous and secretory phenotype. Morphological and biochemical characterization. Lab Invest 1987, 56(6):654-664.
  • [31]Marchok AC, Cone V, Nettesheim P: Induction of squamous metaplasia (vitamin A deficiency) and hypersecretory activity in tracheal organ cultures. Lab Invest 1975, 33(4):451-460.
  • [32]De Jong PM, Van Sterkenburg MA, Kempenaar JA, Dijkman JH, Ponec M: Serial culturing of human bronchial epithelial cells derived from biopsies. In Vitro Cell Dev Biol Anim 1993, 29A(5):379-387.
  • [33]Finkbeiner WE, Carrier SD, Teresi CE: Reverse transcription-polymerase chain reaction (RT-PCR) phenotypic analysis of cell cultures of human tracheal epithelium, tracheobronchial glands, and lung carcinomas. Am J Respir Cell Mol Biol 1993, 9(5):547-556.
  • [34]Kondo M, Finkbeiner WE, Widdicombe JH: Cultures of bovine tracheal epithelium with differentiated ultrastructure and ion transport. In Vitro Cell Dev Biol 1993, 29A(1):19-24.
  • [35]Zakrzewski SS, Richter JF, Krug SM, Jebautzke B, Lee IF, Rieger J, Sachtleben M, Bondzio A, Schulzke JD, Fromm M, Gunzel D: Improved Cell Line IPEC-J2, Characterized as a Model for Porcine Jejunal Epithelium. PLoS One 2013, 8(11):e79643.
  • [36]Bals R, Beisswenger C, Blouquit S, Chinet T: Isolation and air-liquid interface culture of human large airway and bronchiolar epithelial cells. J Cyst Fibros 2004, 3(Suppl 2):49-51.
  • [37]Pedemonte CH: Inhibition of Na(+)-pump expression by impairment of protein glycosylation is independent of the reduced sodium entry into the cell. J Membr Biol 1995, 147(3):223-231.
  • [38]Kikuchi T, Shively JD, Foley JS, Drazen JM, Tschumperlin DJ: Differentiation-dependent responsiveness of bronchial epithelial cells to IL-4/13 stimulation. Am J Physiol Lung Cell Mol Physiol 2004, 287(1):L119-126.
  • [39]Meurens F, Berri M, Siggers RH, Willing BP, Salmon H, Van Kessel AG, Gerdts V: Commensal bacteria and expression of two major intestinal chemokines, TECK/CCL25 and MEC/CCL28, and their receptors. PLoS One 2007, 2:e677.
  • [40]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3(7):RESEARCH0034.1-0034.11.
  • [41]Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J: qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 2007, 8(2):R19. BioMed Central Full Text
  • [42]Zhao S, Fernald RD: Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 2005, 12(8):1047-1064.
  文献评价指标  
  下载次数:20次 浏览次数:29次