BMC Genomics | |
Comparative genomics of unintrogressed Campylobacter coli clades 2 and 3 | |
Mirko Rossi1  Marja-Liisa Hänninen1  Elke KH Schweda2  Joana Revez1  Thomas Schott1  Alejandra Culebro1  Caroline PA Skarp-de Haan1  | |
[1] Department of Food Hygiene and Environmental Health, Helsinki University, Helsinki, Finland;Division of Chemistry, IFM, Linköping University, Linköping, Sweden | |
关键词: Sialyltransferase; Gamma glutamyltranspeptidase; Phylogeny; Comparative genomics; Campylobacter coli; | |
Others : 1217879 DOI : 10.1186/1471-2164-15-129 |
|
received in 2013-08-27, accepted in 2014-02-05, 发布年份 2014 | |
【 摘 要 】
Background
Campylobacter jejuni and C. coli share a multitude of risk factors associated with human gastrointestinal disease, yet their phylogeny differs significantly. C. jejuni is scattered into several lineages, with no apparent linkage, whereas C. coli clusters into three distinct phylogenetic groups (clades) of which clade 1 has shown extensive genome-wide introgression with C. jejuni, yet the other two clades (2 and 3) have less than 2% of C. jejuni ancestry. We characterized a C. coli strain (76339) with four novel multilocus sequence type alleles (ST-5088) and having the capability to express gamma-glutamyltranspeptidase (GGT); an accessory feature in C. jejuni. Our aim was to further characterize unintrogressed C. coli clades 2 and 3, using comparative genomics and with additional genome sequences available, to investigate the impact of horizontal gene transfer in shaping the accessory and core gene pools in unintrogressed C. coli.
Results
Here, we present the first fully closed C. coli clade 3 genome (76339). The phylogenomic analysis of strain 76339, revealed that it belonged to clade 3 of unintrogressed C. coli. A more extensive respiratory metabolism among unintrogressed C. coli strains was found compared to introgressed C. coli (clade 1). We also identified other genes, such as serine proteases and an active sialyltransferase in the lipooligosaccharide locus, not present in C. coli clade 1 and we further propose a unique scenario for the evolution of Campylobacter ggt.
Conclusions
We propose new insights into the evolution of the accessory genome of C. coli clade 3 and C. jejuni. Also, in silico analysis of the gene content revealed that C. coli clades 2 and 3 have genes associated with infection, suggesting they are a potent human pathogen, and may currently be underreported in human infections due to niche separation.
【 授权许可】
2014 Skarp-de Haan et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150709014139997.pdf | 1497KB | download | |
Figure 6. | 17KB | Image | download |
Figure 5. | 21KB | Image | download |
Figure 4. | 29KB | Image | download |
Figure 3. | 57KB | Image | download |
Figure 2. | 39KB | Image | download |
Figure 1. | 82KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]European Food Safety Authority (EFSA), European Centre for Disease Prevention and Contro: The European union summary report on trends and sources of Zoonoses, Zoonotic agents and food-borne outbreaks in 2011. EFSA J 2013, 11((4):3129):74-85.
- [2]Bersudsky M, Rosenberg P, Rudensky B, Wirguin I: Lipopolysaccharides of a Campylobacter coli isolate from a patient with Guillain-Barre syndrome display ganglioside mimicry. Neuromuscul Disord 2000, 10(3):182-186.
- [3]van Belkum A, Jacobs B, van Beek E, Louwen R, van Rijs W, Debruyne L, Gilbert M, Li J, Jansz A, Megraud F, Endtz H: Can Campylobacter coli induce Guillain-Barre syndrome? Eur J Clin Microbiol Infect Dis 2009, 28(5):557-560.
- [4]Gillespie IA, O'Brien SJ, Frost JA, Adak GK, Horby P, Swan AV, Painter MJ, Neal KR, Campylobacter Sentinel Surveillance Scheme Collaborators: A case-case comparison of Campylobacter coli and Campylobacter jejuni infection: a tool for generating hypotheses. Emerg Infect Dis 2002, 8(9):937-942.
- [5]Tam CC, O'Brien SJ, Adak GK, Meakins SM, Frost JA: Campylobacter coli-an important foodborne pathogen. J Infect 2003, 47(1):28-32.
- [6]Doorduyn Y, Van Den Brandhof WE, Van Duynhoven YT, Breukink BJ, Wagenaar JA, Van Pelt W: Risk factors for indigenous Campylobacter jejuni and Campylobacter coli infections in The Netherlands: a case–control study. Epidemiol Infect 2010, 138(10):1391-1404.
- [7]Roux F, Sproston E, Rotariu O, Macrae M, Sheppard SK, Bessell P, Smith-Palmer A, Cowden J, Maiden MC, Forbes KJ, Strachan NJ: Elucidating the aetiology of human campylobacter coli infections. PLoS One 2013, 8(5):e64504.
- [8]Neimann J, Engberg J, Molbak K, Wegener HC: A case–control study of risk factors for sporadic campylobacter infections in Denmark. Epidemiol Infect 2003, 130(3):353-366.
- [9]Kärenlampi R, Rautelin H, Schönberg-Norio D, Paulin L, Hänninen ML: Longitudinal study of Finnish Campylobacter jejuni and C. coli isolates from humans, using multilocus sequence typing, including comparison with epidemiological data and isolates from poultry and cattle. Appl Environ Microbiol 2007, 73(1):148-155.
- [10]Olson KE, Ethelberg S, van Pelt W, Tauxe RV: Epidemiology of Campylobacter jejuni Infections in Industrialized Nations. In Campylobacter. Third edition. Edited by Nachamkin I, Szymanski CM, Blaser MJ. Washington, DC, USA: ASM Press; 2008:163-189.
- [11]Bessede E, Lehours P, Labadi L, Bakiri S, Megraud F: Comparison of Characteristics of Patients Infected by Campylobacter jejuni, Campylobacter coli, and Campylobacter fetus. J Clin Microbiol 2014, 52(1):328-330.
- [12]Wright S, Wilson S, Miller WG, Mandrell RE, Siletzky RM, Kathariou S: Differences in methylation at GATC sites in genomic DNA of Campylobacter coli from turkeys and swine. Appl Environ Microbiol 2010, 76(21):7314-7317.
- [13]Sheppard SK, McCarthy ND, Falush D, Maiden MC: Convergence of Campylobacter species: implications for bacterial evolution. Science 2008, 320(5873):237-239.
- [14]Sheppard SK, Didelot X, Jolley KA, Darling AE, Pascoe B, Meric G, Kelly DJ, Cody A, Colles FM, Strachan NJ, Ogden ID, Forbes K, French NP, Carter P, Miller WG, McCarthy ND, Owen R, Litrup E, Egholm M, Affourtit JP, Bentley SD, Parkhill J, Maiden MC, Falush D: Progressive genome-wide introgression in agricultural Campylobacter coli. Mol Ecol 2013, 22(4):1051-1064.
- [15]Jolley KA, Maiden MC: BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinforma 2010, 11:595. BioMed Central Full Text
- [16]Rossi M, Bolz C, Revez J, Javed S, El-Najjar N, Anderl F, Hyytiäinen H, Vuorela P, Gerhard M, Hänninen ML: Evidence for conserved function of gamma-glutamyltranspeptidase in Helicobacter genus. PLoS One 2012, 7(2):e30543.
- [17]Hofreuter D, Novik V, Galan JE: Metabolic diversity in Campylobacter jejuni enhances specific tissue colonization. Cell Host Microbe 2008, 4(5):425-433.
- [18]de Haan CP, Llarena AK, Revez J, Hänninen ML: Association of Campylobacter jejuni metabolic traits with multilocus sequence types. Appl Environ Microbiol 2012, 78(16):5550-5554.
- [19]Zautner AE, Herrmann S, Corso J, Tareen AM, Alter T, Gross U: Epidemiological association of different Campylobacter jejuni groups with metabolism-associated genetic markers. Appl Environ Microbiol 2011, 77(7):2359-2365.
- [20]Feodoroff B, Ellström P, Hyytiäinen H, Sarna S, Hänninen ML, Rautelin H: Campylobacter jejuni isolates in Finnish patients differ according to the origin of infection. Gut Pathog 2010, 2(1):22. BioMed Central Full Text
- [21]Denis M, Soumet C, Rivoal K, Ermel G, Blivet D, Salvat G, Colin P: Development of a m-PCR assay for simultaneous identification of Campylobacter jejuni and C. coli. Lett Appl Microbiol 1999, 29(6):406-410.
- [22]Dingle KE, Colles FM, Wareing DR, Ure R, Fox AJ, Bolton FE, Bootsma HJ, Willems RJ, Urwin R, Maiden MC: Multilocus sequence typing system for Campylobacter jejuni. J Clin Microbiol 2001, 39(1):14-23.
- [23]Miller WG, On SL, Wang G, Fontanoz S, Lastovica AJ, Mandrell RE: Extended multilocus sequence typing system for Campylobacter coli, C. lari, C. upsaliensis, and C. helveticus. J Clin Microbiol 2005, 43(5):2315-2329.
- [24]Korczak BM, Zurfluh M, Emler S, Kuhn-Oertli J, Kuhnert P: Multiplex strategy for multilocus sequence typing, fla typing, and genetic determination of antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolates collected in Switzerland. J Clin Microbiol 2009, 47(7):1996-2007.
- [25]de Haan CP, Kivistö R, Hakkinen M, Rautelin H, Hänninen ML: Decreasing trend of overlapping multilocus sequence types between human and chicken Campylobacter jejuni isolates over a decade in Finland. Appl Environ Microbiol 2010, 76(15):5228-5236.
- [26]Chevreux B, Wetter T, Suhai S: Genome sequence assembly using trace signals and additional sequence information. Comput Sci and Biol: Proc Ger Conf on Bioinformatics (GCB) 1999, 99:45-56.
- [27]Warren RL, Sutton GG, Jones SJ, Holt RA: Assembling millions of short DNA sequences using SSAKE. Bioinformatics 2007, 23(4):500-501.
- [28]Staden R, Beal KF, Bonfield JK: The Staden package, 1998. Methods Mol Biol 2000, 132:115-130.
- [29]Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O: The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008., 9doi:10.1186/1471-2164-9-75
- [30]Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B: Artemis: sequence visualization and annotation. Bioinformatics 2000, 16(10):944-945.
- [31]Mulder NJ, Apweiler R: The InterPro database and tools for protein domain analysis. Curr Protoc Bioinformatics 2008. doi:10.1002/0471250953.bi0207s21
- [32]Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 2009, 37(Database issue):D233-D238.
- [33]Angiuoli SV, Salzberg SL: Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics 2011, 27(3):334-342.
- [34]Fricke WF, Mammel MK, McDermott PF, Tartera C, White DG, Leclerc JE, Ravel J, Cebula TA: Comparative genomics of 28 Salmonella enterica isolates: evidence for CRISPR-mediated adaptive sublineage evolution. J Bacteriol 2011, 193(14):3556-3568.
- [35]Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A: Galaxy: a platform for interactive large-scale genome analysis. Genome Res 2005, 15(10):1451-1455.
- [36]Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J: Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol 2010. doi:10.1002/0471142727.mb1910s89
- [37]Goecks J, Nekrutenko A, Taylor J, Galaxy Team: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 2010., 11(8) R86-2010-11-8-r86. Epub 2010 Aug 25
- [38]Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000, 17(4):540-552.
- [39]Liu K, Linder CR, Warnow T: RAxML and FastTree: comparing two methods for large-scale maximum likelihood phylogeny estimation. PLoS One 2011, 6(11):e27731.
- [40]Price MN, Dehal PS, Arkin AP: FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 2010, 5(3):e9490.
- [41]Darriba D, Taboada GL, Doallo R, Posada D: jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012, 9(8):772.
- [42]Katoh K, Standley DM: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013, 30(4):772-780.
- [43]Abascal F, Zardoya R, Telford MJ: TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res 2010, 38(Web Server issue):W7-W13.
- [44]Hogan M, Siegmund D: Large deviations for the maxima of some random fields. Adv Appl Math 1986, 7(1):2-22.
- [45]Boni MF, Posada D, Feldman MW: An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 2007, 176(2):1035-1047.
- [46]Bruen TC, Philippe H, Bryant D: A simple and robust statistical test for detecting the presence of recombination. Genetics 2006, 172(4):2665-2681.
- [47]Smith JM: Analyzing the mosaic structure of genes. J Mol Evol 1992, 34(2):126-129.
- [48]Jakobsen IB, Easteal S: A program for calculating and displaying compatibility matrices as an aid in determining reticulate evolution in molecular sequences. Comput Appl Biosci 1996, 12(4):291-295.
- [49]Bruen T, Bruen T: PhiPack: PHI test and other tests of recombination. Montreal, Quebec: McGill University; 2005.
- [50]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59(3):307-321.
- [51]Felsenstein J: PHYLIP -- Phylogeny Inference Package (version 3.2). Cladistics 1989, 5:164-166.
- [52]Kondadi PK, Rossi M, Twelkmeyer B, Schur MJ, Li J, Schott T, Paulin L, Auvinen P, Hänninen ML, Schweda EK, Wakarchuk W: Identification and characterization of a lipopolysaccharide alpha,2,3-sialyltransferase from the human pathogen Helicobacter bizzozeronii. J Bacteriol 2012, 194(10):2540-2550.
- [53]Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM: The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009, 37(Database issue):D141-D145.
- [54]Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012, 61(3):539-542.
- [55]Huson DH, Bryant D: Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006, 23(2):254-267.
- [56]Li L, Stoeckert CJ Jr, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003, 13(9):2178-2189.
- [57]Rasko DA, Myers GS, Ravel J: Visualization of comparative genomic analyses by BLAST score ratio. BMC Bioinforma 2005, 6(1):2. BioMed Central Full Text
- [58]de Haan CP, Lampén K, Corander J, Hänninen ML: Multilocus sequence types of environmental Campylobacter jejuni isolates and their similarities to those of human, poultry and bovine C. jejuni isolates. Zoonoses Public Health 2013, 60(2):125-133.
- [59]Fouts DE, Mongodin EF, Mandrell RE, Miller WG, Rasko DA, Ravel J, Brinkac LM, DeBoy RT, Parker CT, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Sullivan SA, Shetty JU, Ayodeji MA, Shvartsbeyn A, Schatz MC, Badger JH, Fraser CM, Nelson KE: Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol 2005, 3(1):e15.
- [60]Lefébure T, Bitar PD, Suzuki H, Stanhope MJ: Evolutionary dynamics of complete Campylobacter pan-genomes and the bacterial species concept. Genome Biol Evol 2010, 2:646-655.
- [61]Lefébure T, Stanhope MJ: Pervasive, genome-wide positive selection leading to functional divergence in the bacterial genus Campylobacter. Genome Res 2009, 19(7):1224-1232.
- [62]Rawlings N, Barrett A: Evolutionary families of peptidases. Biochem J 1993, 15(290):205-218.
- [63]Hofreuter D, Tsai J, Watson RO, Novik V, Altman B, Benitez M, Clark C, Perbost C, Jarvie T, Du L, Galan JE: Unique features of a highly pathogenic Campylobacter jejuni strain. Infect Immun 2006, 74(8):4694-4707.
- [64]van Vliet AH, Ketley JM, Park SF, Penn CW: The role of iron in Campylobacter gene regulation, metabolism and oxidative stress defense. FEMS Microbiol Rev 2002, 26(2):173-186.
- [65]Holmes K, Mulholland F, Pearson BM, Pin C, McNicholl-Kennedy J, Ketley JM, Wells JM: Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology 2005, 151(Pt 1):243-257.
- [66]Miller CE, Williams PH, Ketley JM: Pumping iron: mechanisms for iron uptake by Campylobacter. Microbiology 2009, 155(Pt 10):3157-3165.
- [67]Stintzi A, van Vliet A, Ketley J: Iron Metabolism, Transport, and Regulation. In Campylobacter. 3rd edition. Edited by Nachamkin I, Szymanski C, Blaser M. Washington DC: ASM Press; 2008.
- [68]Barnes IH, Bagnall MC, Browning DD, Thompson SA, Manning G, Newell DG: Gamma-glutamyl transpeptidase has a role in the persistent colonization of the avian gut by Campylobacter jejuni. Microb Pathog 2007, 43(5–6):198-207.
- [69]Sheppard SK, Colles FM, McCarthy ND, Strachan NJ, Ogden ID, Forbes KJ, Dallas JF, Maiden MC: Niche segregation and genetic structure of Campylobacter jejuni populations from wild and agricultural host species. Mol Ecol 2011, 20(16):3484-3490.
- [70]Gardner SP, Olson JW: 2 Barriers to Horizontal Gene Transfer in Campylobacter jejuni. Adv Appl Microbiol 2012, 79:19.
- [71]Dugar G, Herbig A, Forstner KU, Heidrich N, Reinhardt R, Nieselt K, Sharma CM: High-resolution transcriptome maps reveal strain-specific regulatory features of multiple campylobacter jejuni isolates. PLoS Genet 2013, 9(5):e1003495.
- [72]Richards VP, Lefébure T, Pavinski Bitar PD, Stanhope MJ: Comparative characterization of the virulence gene clusters (lipooligosaccharide [LOS] and capsular polysaccharide [CPS]) for Campylobacter coli, Campylobacter jejuni subsp. jejuni and related Campylobacter species. Infect Genet Evol 2013, 14:200-213.
- [73]Parker CT, Gilbert M, Yuki N, Endtz HP, Mandrell RE: Characterization of lipooligosaccharide-biosynthetic loci of Campylobacter jejuni reveals new lipooligosaccharide classes: evidence of mosaic organizations. J Bacteriol 2008, 190(16):5681-5689.
- [74]Godschalk PC, Heikema AP, Gilbert M, Komagamine T, Ang CW, Glerum J, Brochu D, Li J, Yuki N, Jacobs BC, van Belkum A, Endtz HP: The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain-Barre syndrome. J Clin Invest 2004, 114(11):1659-1665.