期刊论文详细信息
BMC Genomics
Gene expression profiling of 49 human tumor xenografts from in vitro culture through multiple in vivo passages - strategies for data mining in support of therapeutic studies
Jerry Collins7  Howard Stotler1  Michael E Mullendore1  Angelena Millione1  Mark W Kunkel3  David J Kimmel1  Gurmeet Kaur4  Susan L Holbeck3  Elizabeth J Hager5  Kelly M Dougherty1  Raymond Divelbiss1  Suzanne D Borgel1  Carrie A Bonomi1  Benjamin C Orsburn2  Dianne L Newton1  Sergio Y Alcoser5  Luke H Stockwin1  Melinda G Hollingshead6 
[1] Biological Testing Branch, Developmental Therapeutics Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;Thermo Fisher, 134 Yorkshire Boulevard, Indianapolis, IN, USA;Information Technology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI, Bethesda, MD 20892, USA;Molecular Pharmacology Branch, Developmental Therapeutics Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA;Biological Testing Branch, Developmental Therapeutics Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA;Biological Testing Branch, National Cancer Institute at Frederick, 1050 Boyles Street, Building 1043, Room 11, Frederick, MD 21702, USA;Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI, Bethesda, MD 20892, USA
关键词: in vitro to in vivo transition;    Transcriptomic expression;    Transcriptomic stability;    NCI-60 cell line screen;    cDNA microarray;    Affymetrix HG-U133 Plus 2.0 array;    Xenograft models;   
Others  :  1217204
DOI  :  10.1186/1471-2164-15-393
 received in 2013-11-18, accepted in 2014-05-09,  发布年份 2014
PDF
【 摘 要 】

Background

Development of cancer therapeutics partially depends upon selection of appropriate animal models. Therefore, improvements to model selection are beneficial.

Results

Forty-nine human tumor xenografts at in vivo passages 1, 4 and 10 were subjected to cDNA microarray analysis yielding a dataset of 823 Affymetrix HG-U133 Plus 2.0 arrays. To illustrate mining strategies supporting therapeutic studies, transcript expression was determined: 1) relative to other models, 2) with successive in vivo passage, and 3) during the in vitro to in vivo transition. Ranking models according to relative transcript expression in vivo has the potential to improve initial model selection. For example, combining p53 tumor expression data with mutational status could guide selection of tumors for therapeutic studies of agents where p53 status purportedly affects efficacy (e.g., MK-1775). The utility of monitoring changes in gene expression with extended in vivo tumor passages was illustrated by focused studies of drug resistance mediators and receptor tyrosine kinases. Noteworthy observations included a significant decline in HCT-15 colon xenograft ABCB1 transporter expression and increased expression of the kinase KIT in A549 with serial passage. These trends predict sensitivity to agents such as paclitaxel (ABCB1 substrate) and imatinib (c-KIT inhibitor) would be altered with extended passage. Given that gene expression results indicated some models undergo profound changes with in vivo passage, a general metric of stability was generated so models could be ranked accordingly. Lastly, changes occurring during transition from in vitro to in vivo growth may have important consequences for therapeutic studies since targets identified in vitro could be over- or under-represented when tumor cells adapt to in vivo growth. A comprehensive list of mouse transcripts capable of cross-hybridizing with human probe sets on the HG-U133 Plus 2.0 array was generated. Removal of the murine artifacts followed by pairwise analysis of in vitro cells with respective passage 1 xenografts and GO analysis illustrates the complex interplay that each model has with the host microenvironment.

Conclusions

This study provides strategies to aid selection of xenograft models for therapeutic studies. These data highlight the dynamic nature of xenograft models and emphasize the importance of maintaining passage consistency throughout experiments.

【 授权许可】

   
2014 Hollingshead et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705055243168.pdf 2106KB PDF download
Figure 5. 45KB Image download
Figure 4. 272KB Image download
Figure 3. 275KB Image download
Figure 2. 109KB Image download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Hollingshead MG: Antitumor efficacy testing in rodents. J Natl Cancer Inst 2008, 100(21):1500-1510.
  • [2]Whiteford CC, Bilke S, Greer BT, Chen Q, Braunschweig TA, Cenacchi N, Wei JS, Smith MA, Houghton P, Morton C, Reynolds CP, Lock R, Gorlick R, Khanna C, Thiele CJ, Takikita M, Catchpoole D, Hewitt SM, Khan J: Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. Cancer Res 2007, 67(1):32-40.
  • [3]Weinstein JN: Integromic analysis of the NCI-60 cancer cell lines. Breast Dis 2004, 19:11-22.
  • [4]Holbeck S, Chang J, Best AM, Bookout AL, Mangelsdorf DJ, Martinez ED: Expression profiling of nuclear receptors in the NCI60 cancer cell panel reveals receptor-drug and receptor-gene interactions. Mol Endocrinol 2010, 24(6):1287-1296.
  • [5]Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, Andrews DT, Scudiero DA, Eisen MB, Sausville EA, Pommier Y, Botstein D, Brown PO, Weinstein JN: A gene expression database for the molecular pharmacology of cancer. Nat Genet 2000, 24(3):236-244.
  • [6]Sausville EA, Holbeck SL: Transcription profiling of gene expression in drug discovery and development: the NCI experience. Eur J Cancer 2004, 40(17):2544-2549.
  • [7]Liu H, D’Andrade P, Fulmer-Smentek S, Lorenzi P, Kohn KW, Weinstein JN, Pommier Y, Reinhold WC: mRNA and microRNA expression profiles of the NCI-60 integrated with drug activities. Mol Cancer Ther 2010, 9(5):1080-1091.
  • [8]Gmeiner WH, Reinhold WC, Pommier Y: Genome-wide mRNA and microRNA profiling of the NCI 60 cell-line screen and comparison of FdUMP [10] with fluorouracil, floxuridine, and topoisomerase 1 poisons. Mol Cancer Ther 2010, 9(12):3105-3114.
  • [9]Nishizuka S, Charboneau L, Young L, Major S, Reinhold WC, Waltham M, Kouros-Mehr H, Bussey KJ, Lee JK, Espina V, Munson PJ, Petricoin E 3rd, Liotta LA, Weinstein JN: Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc Natl Acad Sci U S A 2003, 100(24):14229-14234.
  • [10]Paull KD, Shoemaker RH, Hodes L, Monks A, Scudiero DA, Rubinstein L, Plowman J, Boyd MR: Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J Natl Cancer Inst 1989, 81(14):1088-1092.
  • [11]Zembutsu H, Ohnishi Y, Tsunoda T, Furukawa Y, Katagiri T, Ueyama Y, Tamaoki N, Nomura T, Kitahara O, Yanagawa R, Hirata K, Nakamura Y: Genome-wide cDNA microarray screening to correlate gene expression profiles with sensitivity of 85 human cancer xenografts to anticancer drugs. Cancer Res 2002, 62(2):518-527.
  • [12]Smith V, Wirth GJ, Fiebig HH, Burger AM: Tissue microarrays of human tumor xenografts: characterization of proteins involved in migration and angiogenesis for applications in the development of targeted anticancer agents. Cancer Genomics Proteomics 2008, 5(5):263-273.
  • [13]Harbig J, Sprinkle R, Enkemann SA: A sequence-based identification of the genes detected by probesets on the Affymetrix U133 plus 2.0 array. Nucleic Acids Res 2005, 33(3):e31.
  • [14]Alcoser SY, Kimmel DJ, Borgel SD, Carter JP, Dougherty KM, Hollingshead MG: Real-time PCR-based assay to quantify the relative amount of human and mouse tissue present in tumor xenografts. BMC Biotechnol 2011, 11:124. BioMed Central Full Text
  • [15]Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL: Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 1995, 154(1):180-191.
  • [16]Li Q, Birkbak NJ, Gyorffy B, Szallasi Z, Eklund AC: Jetset: selecting the optimal microarray probe set to represent a gene. BMC Bioinformatics 2011, 12:474. BioMed Central Full Text
  • [17]Junttila MR, Evan GI: p53–a Jack of all trades but master of none. Nat Rev Cancer 2009, 9(11):821-829.
  • [18]Kruse JP, Gu W: Modes of p53 regulation. Cell 2009, 137(4):609-622.
  • [19]Stathis A, Oza A: Targeting Wee1-like protein kinase to treat cancer. Drug News Perspect 2010, 23(7):425-429.
  • [20]Essmann F, Schulze-Osthoff K: Translational approaches targeting the p53 pathway for anti-cancer therapy. Br J Pharmacol 2012, 165(2):328-344.
  • [21]Ueda K, Clark DP, Chen CJ, Roninson IB, Gottesman MM, Pastan I: The human multidrug resistance (mdr1) gene. cDNA cloning and transcription initiation. J Biol Chem 1987, 262(2):505-508.
  • [22]Johansson K, Ahlen K, Rinaldi R, Sahlander K, Siritantikorn A, Morgenstern R: Microsomal glutathione transferase 1 in anticancer drug resistance. Carcinogenesis 2007, 28(2):465-470.
  • [23]Plowman J, Dykes DJ Jr, Hollingshead MG, Simpson-Herren L, Alley MC: Human tumor xenograft models in NCI drug development. In Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials and Approval. Edited by Teicher BA. Totowa, NJ: Humana Press; 1997:101-125.
  • [24]An Y, Ongkeko WM: ABCG2: the key to chemoresistance in cancer stem cells? Expert Opin Drug Metab Toxicol 2009, 5(12):1529-1542.
  • [25]McConkey DJ, Choi W, Marquis L, Martin F, Williams MB, Shah J, Svatek R, Das A, Adam L, Kamat A, Siefker-Radtke A, Dinney C: Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev 2009, 28(3–4):335-344.
  • [26]Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF: Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 2007, 104(24):10158-10163.
  • [27]Kogan-Sakin I, Cohen M, Paland N, Madar S, Solomon H, Molchadsky A, Brosh R, Buganim Y, Goldfinger N, Klocker H, Schalken JA, Rotter V: Prostate stromal cells produce CXCL-1, CXCL-2, CXCL-3 and IL-8 in response to epithelia-secreted IL-1. Carcinogenesis 2009, 30(4):698-705.
  • [28]West RB, Nuyten DS, Subramanian S, Nielsen TO, Corless CL, Rubin BP, Montgomery K, Zhu S, Patel R, Hernandez-Boussard T, Goldblum JR, Brown PO, van de Vijver M, van de Rijn M: Determination of stromal signatures in breast carcinoma. PLoS Biol 2005, 3(6):e187.
  • [29]Baranello C, Mariani M, Andreoli M, Fanelli M, Martinelli E, Ferrandina G, Scambia G, Shahabi S, Ferlini C: Adrenomedullin in ovarian cancer: foe in vitro and friend in vivo? PLoS One 2012, 7(7):e40678.
  • [30]Kuai WX, Wang Q, Yang XZ, Zhao Y, Yu R, Tang XJ: Interleukin-8 associates with adhesion, migration, invasion and chemosensitivity of human gastric cancer cells. World J Gastroenterol 2012, 18(9):979-985.
  • [31]Keeley EC, Mehrad B, Strieter RM: Chemokines as mediators of tumor angiogenesis and neovascularization. Exp Cell Res 2011, 317(5):685-690.
  • [32]Nakayama T, Hirakawa H, Shibata K, Nazneen A, Abe K, Nagayasu T, Taguchi T: Expression of angiopoietin-like 4 (ANGPTL4) in human colorectal cancer: ANGPTL4 promotes venous invasion and distant metastasis. Oncol Rep 2011, 25(4):929-935.
  • [33]Creighton CJ, Bromberg-White JL, Misek DE, Monsma DJ, Brichory F, Kuick R, Giordano TJ, Gao W, Omenn GS, Webb CP, Hanash SM: Analysis of tumor-host interactions by gene expression profiling of lung adenocarcinoma xenografts identifies genes involved in tumor formation. Mol Cancer Res 2005, 3(3):119-129.
  • [34]Nakamura T, Fidler IJ, Coombes KR: Gene expression profile of metastatic human pancreatic cancer cells depends on the organ microenvironment. Cancer Res 2007, 67(1):139-148.
  • [35]Camphausen K, Purow B, Sproull M, Scott T, Ozawa T, Deen DF, Tofilon PJ: Influence of in vivo growth on human glioma cell line gene expression: convergent profiles under orthotopic conditions. Proc Natl Acad Sci U S A 2005, 102(23):8287-8292.
  • [36]Stein WD, Litman T, Fojo T, Bates SE: A Serial Analysis of Gene Expression (SAGE) database analysis of chemosensitivity: comparing solid tumors with cell lines and comparing solid tumors from different tissue origins. Cancer Res 2004, 64(8):2805-2816.
  • [37]Creighton C, Kuick R, Misek DE, Rickman DS, Brichory FM, Rouillard JM, Omenn GS, Hanash S: Profiling of pathway-specific changes in gene expression following growth of human cancer cell lines transplanted into mice. Genome Biol 2003, 4(7):R46. BioMed Central Full Text
  • [38]Begley CG, Ellis LM: Drug development: raise standards for preclinical cancer research. Nature 2012, 483(7391):531-533.
  • [39]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4(2):249-264.
  文献评价指标  
  下载次数:29次 浏览次数:22次