期刊论文详细信息
BMC Evolutionary Biology
Erosive processes after tectonic uplift stimulate vicariant and adaptive speciation: evolution in an Afrotemperate-endemic paper daisy genus
Nicola G Bergh1  G Anthony Verboom2  Joanne Bentley2 
[1] The Compton Herbarium, Kirstenbosch Research Centre, South African National Biodiversity Institute, Private Bag X7, Newlands, Cape Town, South Africa;University of Cape Town, Cape Town, South Africa
关键词: Gnaphalieae;    Vicariance;    Adaptive speciation;    Uplift;    Drakensberg;    Afrotemperate;   
Others  :  1084841
DOI  :  10.1186/1471-2148-14-27
 received in 2013-08-03, accepted in 2014-02-10,  发布年份 2014
PDF
【 摘 要 】

Background

The role of tectonic uplift in stimulating speciation in South Africa’s only alpine zone, the Drakensberg, has not been explicitly examined. Tectonic processes may influence speciation both through the creation of novel habitats and by physically isolating plant populations. We use the Afrotemperate endemic daisy genus Macowania to explore the timing and mode (geographic versus adaptive) of speciation in this region. Between sister species pairs we expect high morphological divergence where speciation has happened in sympatry (adaptive) while with geographic (vicariant) speciation we may expect to find less morphological divergence and a greater degree of allopatry. A dated molecular phylogenetic hypothesis for Macowania elucidates species’ relationships and is used to address the potential impact of uplift on diversification. Morphological divergence of a small sample of reproductive and vegetative characters, used as a proxy for adaptive divergence, is measured against species’ range distributions to estimate mode of speciation across two subclades in the genus.

Results

The Macowania crown age is consistent with the hypothesis of post-uplift diversification, and we find evidence for both vicariant and adaptive speciation between the two subclades within Macowania. Both subclades exhibit strong signals of range allopatry, suggesting that geographic isolation was important in speciation. One subclade, associated with dry, rocky environments at high altitudes, shows very little morphological and ecological differentiation but high range allopatry. The other subclade occupies a greater variety of habitats and exhibits far greater morphological differentiation, but contains species with overlapping distribution ranges.

Conclusions

Species in Macowania are likely to have diversified in response to tectonic uplift, and we invoke uplift and uplift-mediated erosion as the main drivers of speciation. The greater relative morphological divergence in sympatric species of Macowania indicates that speciation in the non-sympatric taxa may not have required obvious adaptive differences, implying that simple geographic isolation was the driving force for speciation (‘neutral speciation’).

【 授权许可】

   
2014 Bentley et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113164718749.pdf 3069KB PDF download
Figure 6. 65KB Image download
Figure 5. 49KB Image download
Figure 4. 67KB Image download
Figure 3. 56KB Image download
Figure 2. 142KB Image download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Simpson BB: Pleistocene changes in the flora of the High Tropical Andes. Paleobiology 1975, 1:273-294.
  • [2]Burnham RJ, Graham A: The history of Neotropical vegetation: new developments and status. Ann Mo Bot Gard 1999, 86:546-589.
  • [3]Hughes C, Eastwood R: Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci U S A 2006, 103:10334-10339.
  • [4]Bryson RW, Murphy RW, Lathrop A, Lazcano-Villareal D: Evolutionary drivers of phylogeographical diversity in the highlands of Mexico: a case study of the Crotalus triseriatus species group of montane rattlesnakes. J Biogeogr 2011, 38:697-710.
  • [5]Bryson RW, García-Vázquez UO, Riddle BR: Diversification in the Mexican horned lizard Phrynosoma orbiculare across a dynamic landscape. Mol Phylogenet Evol 2012, 62:87-96.
  • [6]Bryson RW, García-Vázquez UO, Riddle BR: Relative roles of Neogene vicariance and Quaternary climate change on the historical diversification of bunchgrass lizards (Sceloporus scalaris group) in Mexico. Mol Phylogenet Evol 2012, 62:447-457.
  • [7]Xu T, Abbott RJ, Milne RI, Mao K, Du FK, Wu G, Ciren Z, et al.: Phylogeography and allopatric divergence of cypress species (Cupressus L.) in the Qinghai-Tibetan Plateau and adjacent regions. BMC Evol Biol 2010, 10:194. BioMed Central Full Text
  • [8]Yang F-S, Qin A-L, Li Y-F, Wang X-Q: Great genetic differentiation among populations of Meconopsis integrifolia and its implication for plant speciation in the Qinghai-Tibetan Plateau. PloS one 2012, 7:e37196.
  • [9]Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J: Biodiversity hotspots for conservation priorities. Nature 2000, 403:853-858.
  • [10]Luteyn JL, Churchill SP, Griffin D III, Gradstein SR, Sipman HJM, Gavilanes A: A checklist of plant diversity, geographical distribution, and botanical literature. New York: Botanical Garden; 1999.
  • [11]King LC, King LA: A reappraisal of the Natal monocline. S Afr Geogr J 1959, 41:15-30.
  • [12]Partridge TC, Maud RR: Geomorphic evolution of southern Africa since the Mesozoic. S Afr J Geol 1987, 90:179-208.
  • [13]Partridge TC, Maud RR: Macro-scale geomorphic evolution of southern Africa. Oxf Monogr Geol Geophys 2000, 40:3-18.
  • [14]Partridge TC: Of diamonds, dinosaurs and diastrophism: 150 years of landscape evolution in southern Africa. S Afr J Geol 1998, 101:167-184.
  • [15]Carbutt C, Edwards TJ: The flora of the Drakensberg Alpine Centre. Edinburgh J Bot 2004, 60:581-607.
  • [16]Galley C, Bytebier B, Bellstedt DU, Peter Linder H: The Cape element in the Afrotemperate flora: from Cape to Cairo? Proc R Soc B 2007, 274:535-543.
  • [17]Carlson SE, Linder HP, Donoghue MJ: The historical biogeography of Scabiosa (Dipsacaceae): implications for Old World plant disjunctions. J Biogeogr 2012, 39:1086-1100.
  • [18]Mcguire AF, Kron KA: Phylogenetic relationships of European and African Ericas. Int J Plant Sci 2005, 166:311-318.
  • [19]Goldblatt P, Manning JC: Plant diversity of the Cape region of South Africa. Ann Mo Bot Gard 2002, 89:281-302.
  • [20]Killick DJB: The Afro-alpine Region. In Biogeography and Ecology of Southern Africa. Edited by Werger MJA. The Hague: Springer Netherlands; 1978:515-560.
  • [21]Lande R: Natural selection and random genetic drift in phenotypic evolution. Evolution 1976, 30:314-334.
  • [22]Wiens JJ: Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 2004, 58:193-197.
  • [23]Kozak KH, Weisrock DW, Larson A: Rapid lineage accumulation in a non-adaptive radiation: phylogenetic analysis of diversification rates in eastern North American woodland salamanders (Plethodontidae: Plethodon). Proc R Soc B 2009, 273:539-546.
  • [24]Rundell RJ, Price TD: Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends Ecol Evol 2009, 24:394-399.
  • [25]Schluter D: Ecological character displacement in adaptive radiation. Am Nat 2000, 156:S4-S16.
  • [26]Schluter D: Evidence for ecological speciation and its alternative. Science 2009, 323:737-741.
  • [27]Mckinnon JS, Mori S, Blackman BK, David L, Kingsley DM, Jamieson L, Chou J, et al.: Evidence for ecology’s role in speciation. Nature 2004, 429:294-298.
  • [28]Orr MR, Smith TB: Ecology and speciation. Trends Ecol Evol 1998, 13:502-506.
  • [29]Partridge TC, Brink ABA: Gravels and terraces of the lower Vaal River basin. S Afr Geogr J 1967, 49:21-38.
  • [30]Davies TA, Hay WW, Southam JR, Worsley TR: Estimates of Cenozoic oceanic sedimentation rates. Science 1977, 197:53-55.
  • [31]Watson A, Williams DP: Early Pleistocene river gravels in Swaziland and their geomorphological and structural significance. Z Geomorphol 1985, 29:71-87. New Series
  • [32]Lageat Y, Robb JL: The relationships between structural landforms, erosion surfaces, and the geology of the Archean granite basement in the Barberton region, Eastern Transvaal. Trans Geol Soc S Af 1984, 87:141-159.
  • [33]Gilchrist AR, Summerfield MA: Tectonic models of passive margin evolution and their implications for theories of long-term landscape development. In Process models and theoretical geomorphology. Edited by Kirkby MJ. Chichester, UK: Wiley; 1994:55-84.
  • [34]Burke K, Gunnell Y: The African erosion surface: a continental-scale synthesis of geomorphology, tectonics, and environmental change over the past 180 million years. Mem Geol Soc Am 2008., 201
  • [35]Linder HP: The historical phytogeography of the Disinae (Orchidaceae). Bothalia 1983, 14:565-570.
  • [36]White F: The Afromontane region. In Biogeography and ecology of southern Africa. Edited by Werger MJA. The Hague: Springer Netherlands; 1978:465-510.
  • [37]Linder HP, Meadows ME, Cowling RM: History of the Cape Flora. Cape Town: Oxford University Press; 1992:113-134. [The ecology of Fynbos: nutrients, fire and diversity]
  • [38]Killick DJB: Drakensberg Alpine Region – Lesotho and South Africa. In Centres of Plant Diversity. Edited by Davis SD, Heywood VH. Oxford: Oxford University Press; 1994:257-260.
  • [39]Van Wyk AE, Smith GF: Regions of Floristic Endemism in Southern Africa. Hatfield: Umdaus Press; 2001.
  • [40]Carbutt C, Edwards TJ: The endemic and near-endemic angiosperms of the Drakensberg Alpine Centre. S Afr J Bot 2006, 72:105-132.
  • [41]Kroner G: Systematische Studien im Umkreis von Athrixia Ker-Gawler (Asteraceae). Mitt Bot St Samml Munchen 1980, 16:1-267.
  • [42]Hilliard OM, Burtt B: Notes on some plants of southern Africa. Notes Roy Bot Gard Edinburgh 1985, 42:230-233.
  • [43]Bergh NG, Linder HP: Cape diversification and repeated out-of-southern-Africa dispersal in paper daisies (Asteraceae-Gnaphalieae). Mol Phylogenet Evol 2009, 51:5-18.
  • [44]Ward J, Bayer RJ, Breitwieser I, Smissen R, Galbany-Casals M, Unwin M: Ch. 36: Gnaphalieae. In Systematics, Evolution and Biogeography of Compositae. Edited by Funk VA, Susanna A, Stuessy TF, Bayer RJ. Vienna: International Association for Plant Taxonomy; 2009:539-588.
  • [45]Galbany-Casals M, Andrés-Sánchez S, Garcia-Jacas N, Susanna A, Rico E, Montserrat Martínez-Ortega M: How many of Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the Filago group (Asteraceae, Gnaphalieae), with special focus on the genus Filago. Taxon 2010, 59:1671-1689.
  • [46]Bergh NG, Trisos CH, Verboom GA: Phylogeny of the “Ifloga clade” (Asteraceae, Gnaphalieae), a lineage occurring disjointly in the Northern and Southern Hemisphere, and inclusion of Trichogyne in synonymy with Ifloga. Taxon 2011, 60:1065-1075.
  • [47]Doyle J, Doyle JL: Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem Bull 1987, 19:11-15.
  • [48]Gavel NJ, Jarrett RL: A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol Biol Rep 1991, 9:262-266.
  • [49]Bayer RJ, Puttock CF, Kelchner SA: Phylogeny of South African Gnaphalieae (Asteraceae) based on two noncoding chloroplast sequences. Am J Bot 2000, 87:259-272.
  • [50]Baldwin BG, Markos S: Phylogenetic utility of the external transcribed spacer (ETS) of 18S-26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Mol Phylogenet Evol 1998, 10:449-463.
  • [51]Markos S, Baldwin BG: Higher-level relationships and major lineages of Lessingia (Compositae, Asteraceae) based on nuclear rDNA internal and external transcribed spacer (ITS and ETS) sequences. Syst Biol 2001, 26:168-183.
  • [52]White TJ, Bruns T, Lee S, Taylor JW: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications. Edited by Innis MA, Gelfand DH, Sninsky JJ, White TJ. New York: Academic Press Inc; 1990:315-322.
  • [53]Taberlet P, Gielly L, Pauton G, Bouvet J: Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 1991, 17:1105-1109.
  • [54]Sang T, Crawford DJ, Stuessy TF: Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 1997, 84:1120-1136.
  • [55]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp 1999, 41:95-98.
  • [56]Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985, 39:783-791.
  • [57]Swofford DL: PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland MA: Sinauer Associates; 1998.
  • [58]Felsenstein J: Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 1978, 27:401-410.
  • [59]Alfaro ME, Holder MT: The posterior and the prior in Bayesian phylogenetics. Annu Rev Ecol Evol Syst 2006, 37:19-42.
  • [60]Hillis DM, Bull JJ: An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analyses. Syst Biol 2009, 59:182-192.
  • [61]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford, England) 2001, 17:754-755.
  • [62]Nylander JAA: MrModeltest v2. Evolutionary Biology Centre, Uppsala University; 2004:2. [Programme distributed by author] [http://www.abc.se/~nylander/mrmodeltest2/mrmodeltest2.html webcite]
  • [63]Akaike H: A new look at the statistical model identification. IEEE Trans Automat Contr 1994, 19:716-723.
  • [64]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [65]Graur D, Martin W: Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends Genet 2004, 20:80-86.
  • [66]Calenge C: The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 2006, 197:516-519.
  • [67]Burgman MA, Fox JC: Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Anim Conserv 2003, 6:19-28.
  • [68]Fitzpatrick BM, Turelli M: The geography of mammalian speciation: mixed signals from phylogenies and range maps. Evolution 2006, 60:601-615.
  • [69]Yates MJ, Verboom GA, Rebelo AG, Cramer MD: Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region. Funct Ecol 2010, 24:485-492.
  • [70]Mahalanobis PC: On the generalized distance in statistics. Proc Nat Instit Sci India 1936, 2:49-55.
  • [71]Devos N, Barker NP, Nordenstam B, Mucina L: A multilocus phylogeny of Euryops (Asteraceae: Senecioneae) augments support for the “Cape to Cairo” hypothesis of floral migrations in Africa. Taxon 2010, 59:57-67.
  • [72]Wolfenden E, Ebinger C, Yirgu G, Deino A, Ayalew D: Evolution of the northern Main Ethiopian rift: birth of a triple junction. Earth Planet Sc Lett 2004, 224:213-228.
  • [73]Chorowicz J: The East African rift system. J Afr Earth Sci 2005, 43:379-410.
  • [74]Sepulchre P, Ramstein G, Fluteau F, Schuster M, Tiercelin J-J, Brunet M: Tectonic uplift and Eastern Africa aridification. Science 2006, 313:1419-1423.
  • [75]Sakai T, Saneyoshi M, Tanaka S, Sawada Y, Nakatsukasa M, Mbua E, Ishida H: Climate shift recorded at around 10 Ma in Miocene succession of Samburu Hills, northern Kenya Rift, and its significance. Geol Soc London Spec Publ 2010, 342:109-127.
  • [76]Levin NE, Quade J, Simpson SW, Semaw S, Rogers M: Isotopic evidence for Plio-Pleistocene environmental change at Gona, Ethiopia. Earth Planet Sc Lett 2004, 219:93-110.
  • [77]Cerling TE, Harris JM, Macfadden BJ, Leakey MG, Quadek J, Eisenmann V, Ehleringer JR: Global vegetation change through the Miocene/Pliocene boundary. Nature 1997, 389:153-158.
  • [78]Moore AE, Cotterill FPDW, Main MPL, Williams HB: The Zambezi River. In Large Rivers: Geomorphology and Management. Edited by Gupta A. England: Wiley; 2007:311-332.
  • [79]Mucina L, Rutherford MC: The vegetation of South Africa, Lesotho and Swaziland. In Strelitzia 19. Edited by Mucina L, Rutherford MC. Pretoria: South African National Biodiversity Institute; 2006:585-614.
  • [80]Hilliard OM, Burtt B: Macowania. Notes Roy Bot Gard 1976, 34:260-279.
  • [81]Arroyo MTK, Primack R, Armesto J: Community studies in pollination ecology in the high temperate Andes of Central Chile. I. Pollination mechanisms and attitudinal variation. Am J Bot 1982, 69:82-97.
  • [82]Elberling H, Olesen JM: The structure of a high latitude plant-flower visitor system: the dominance of flies. Ecography 1999, 22:314-323.
  文献评价指标  
  下载次数:36次 浏览次数:22次