期刊论文详细信息
BMC Developmental Biology
Med14 cooperates with brg1 in the differentiation of skeletogenic neural crest
Ian C. Scott1  Jeffrey T. A. Burrows2  Xin Lou1 
[1] Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, 101 College Street, Toronto M5G 1L7, Ontario, Canada;Department of Molecular Genetics, University of Toronto, 1 King‚s College Circle, Toronto M5S 1A8, Ontario, Canada
关键词: Jaw development;    Med14;    Craniofacial defect;    Brg1;    BAF complex;    Mediator complex;    Neural crest;   
Others  :  1234328
DOI  :  10.1186/s12861-015-0090-9
 received in 2015-04-14, accepted in 2015-10-25,  发布年份 2015
PDF
【 摘 要 】

Background

An intricate gene regulatory network drives neural crest migration and differentiation. How epigenetic regulators contribute to this process is just starting to be understood.

Results

We found that mutation of med14 or brg1 in zebrafish embryos resulted in a cluster of neural crest cell-related defects. In med14 or brg1 mutants, neural crest cells that form the jaw skeleton were specified normally and migrated to target sites. However, defects in their subsequent terminal differentiation were evident. Transplantation experiments demonstrated that med14 and brg1 are required directly in neural crest cells. Analysis of med14; brg1 double mutant embryos suggested the existence of a strong genetic interaction between members of the Mediator and BAF complexes.

Conclusions

These results suggest a critical role for Mediator and BAF complex function in neural crest development, and may also clarify the nature of defects in some craniofacial abnormalities.

【 授权许可】

   
2015 Lou et al.

【 预 览 】
附件列表
Files Size Format View
20151129021159250.pdf 4060KB PDF download
Fig. 7. 101KB Image download
Fig. 6. 83KB Image download
Fig. 5. 100KB Image download
Fig. 4. 195KB Image download
Fig. 3. 128KB Image download
Fig. 2. 54KB Image download
Fig. 1. 177KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Bronner ME, LaBonne C. Preface: the neural crest--from stem cell formation to migration and differentiation. Dev Biol. 2012; 366(1):1.
  • [2]Sauka-Spengler T, Bronner-Fraser M. A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol. 2008; 9(7):557-568.
  • [3]Betancur P, Bronner-Fraser M, Sauka-Spengler T. Assembling neural crest regulatory circuits into a gene regulatory network. Annu Rev Cell Dev Biol. 2010; 26:581-603.
  • [4]Hu N, Strobl-Mazzulla PH, Bronner ME. Epigenetic regulation in neural crest development. Dev Biol. 2014; 396(2):159-168.
  • [5]Myers LC, Kornberg RD. Mediator of transcriptional regulation. Annu Rev Biochem. 2000; 69:729-749.
  • [6]Malik S, Roeder RG. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet. 2010; 11(11):761-772.
  • [7]Black JC, Choi JE, Lombardo SR, Carey M. A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol Cell. 2006; 23(6):809-818.
  • [8]Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 2011; 470(7333):279-283.
  • [9]Grontved L, Madsen MS, Boergesen M, Roeder RG, Mandrup S. MED14 tethers mediator to the N-terminal domain of peroxisome proliferator-activated receptor gamma and is required for full transcriptional activity and adipogenesis. Mol Cell Biol. 2010; 30(9):2155-2169.
  • [10]Burrows JT, Pearson BJ, Scott IC. An In Vivo Requirement for the Mediator Subunit Med14 in the Maintenance of Stem Cell Populations. Stem Cell Rep. 2015; 4(4):670-684.
  • [11]Ho L, Crabtree GR. Chromatin remodelling during development. Nature. 2010; 463(7280):474-484.
  • [12]Reyes JC, Barra J, Muchardt C, Camus A, Babinet C, Yaniv M. Altered control of cellular proliferation in the absence of mammalian brahma (SNF2alpha). EMBO J. 1998; 17(23):6979-6991.
  • [13]Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, Gilliam A, Randazzo F, Metzger D, Chambon P, Crabtree G et al.. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell. 2000; 6(6):1287-1295.
  • [14]Takeuchi JK, Lou X, Alexander JM, Sugizaki H, Delgado-Olguin P, Holloway AK, Mori AD, Wylie JN, Munson C, Zhu Y et al.. Chromatin remodelling complex dosage modulates transcription factor function in heart development. Nat Commun. 2011; 2:187.
  • [15]Yoo AS, Staahl BT, Chen L, Crabtree GR. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature. 2009; 460(7255):642-646.
  • [16]Ansari SA, Paul E, Sommer S, Lieleg C, He Q, Daly AZ, Rode KA, Barber WT, Ellis LC, LaPorta E et al.. Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast. J. Biol. Chem. 2014; 289(21):14981-14995.
  • [17]Lemieux K, Gaudreau L. Targeting of Swi/Snf to the yeast GAL1 UAS G requires the Mediator, TAF IIs, and RNA polymerase II. EMBO J. 2004; 23(20):4040-4050.
  • [18]Eroglu B, Wang G, Tu N, Sun X, Mivechi NF. Critical role of Brg1 member of the SWI/SNF chromatin remodeling complex during neurogenesis and neural crest induction in zebrafish. Dev Dyn. 2006; 235(10):2722-2735.
  • [19]Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, Chang CP, Zhao Y, Swigut T, Wysocka J. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature. 2010; 463(7283):958-962.
  • [20]Kague E, Gallagher M, Burke S, Parsons M, Franz-Odendaal T, Fisher S. Skeletogenic fate of zebrafish cranial and trunk neural crest. PLoS One. 2012; 7(11):e47394.
  • [21]Stuhlmiller TJ, Garcia-Castro MI. Current perspectives of the signaling pathways directing neural crest induction. Cell. Mol. Life Sci. 2012; 69(22):3715-3737.
  • [22]Piloto S, Schilling TF. Ovo1 links Wnt signaling with N-cadherin localization during neural crest migration. Development. 2010; 137(12):1981-1990.
  • [23]Yan YL, Miller CT, Nissen RM, Singer A, Liu D, Kirn A, Draper B, Willoughby J, Morcos PA, Amsterdam A et al.. A zebrafish sox9 gene required for cartilage morphogenesis. Development. 2002; 129(21):5065-5079.
  • [24]Sasaki MM, Nichols JT, Kimmel CB. edn1 and hand2 Interact in early regulation of pharyngeal arch outgrowth during zebrafish development. PLoS One. 2013; 8(6):e67522.
  • [25]Duband JL. Neural crest delamination and migration: integrating regulations of cell interactions, locomotion, survival and fate. Adv Exp Med Biol. 2006; 589:45-77.
  • [26]David NB, Saint-Etienne L, Tsang M, Schilling TF, Rosa FM. Requirement for endoderm and FGF3 in ventral head skeleton formation. Development. 2002; 129(19):4457-4468.
  • [27]Jarov A, Williams KP, Ling LE, Koteliansky VE, Duband JL, Fournier-Thibault C. A dual role for Sonic hedgehog in regulating adhesion and differentiation of neuroepithelial cells. Dev Biol. 2003; 261(2):520-536.
  • [28]Graham A, Okabe M, Quinlan R. The role of the endoderm in the development and evolution of the pharyngeal arches. J Anat. 2005; 207(5):479-487.
  • [29]Choe CP, Crump JG. Tbx1 controls the morphogenesis of pharyngeal pouch epithelia through mesodermal Wnt11r and Fgf8a. Development. 2014; 141(18):3583-3593.
  • [30]Kallen K, Robert E, Mastroiacovo P, Castilla EE, Kallen B. CHARGE Association in newborns: a registry-based study. Teratology. 1999; 60(6):334-343.
  • [31]Delahaye A, Sznajer Y, Lyonnet S, Elmaleh-Berges M, Delpierre I, Audollent S, Wiener-Vacher S, Mansbach AL, Amiel J, Baumann C et al.. Familial CHARGE syndrome because of CHD7 mutation: clinical intra- and interfamilial variability. Clin Genet. 2007; 72(2):112-121.
  • [32]Westerfield M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish Danio (Brachydanio) rerio. University of Oregon Press, Oregon; 1993.
  • [33]Ober EA, Verkade H, Field HA, Stainier DY. Mesodermal Wnt2b signalling positively regulates liver specification. Nature. 2006; 442(7103):688-691.
  • [34]Huang CJ, Tu CT, Hsiao CD, Hsieh FJ, Tsai HJ. Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev Dyn. 2003; 228(1):30-40.
  • [35]Jin SW, Herzog W, Santoro MM, Mitchell TS, Frantsve J, Jungblut B, Beis D, Scott IC, D’Amico LA, Ober EA et al.. A transgene-assisted genetic screen identifies essential regulators of vascular development in vertebrate embryos. Dev Biol. 2007; 307(1):29-42.
  • [36]Thisse C, Thisse B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc. 2008; 3(1):59-69.
  • [37]Klymkowsky MW, Hanken J. Whole-mount staining of Xenopus and other vertebrates. Methods Cell Biol. 1991; 36:419-441.
  • [38]Caron SJ, Prober D, Choy M, Schier AF. In vivo birthdating by BAPTISM reveals that trigeminal sensory neuron diversity depends on early neurogenesis. Development. 2008; 135(19):3259-3269.
  • [39]Verduzco D, Amatruda JF. Analysis of cell proliferation, senescence, and cell death in zebrafish embryos. Methods Cell Biol. 2011; 101:19-38.
  • [40]Scott IC, Masri B, D’Amico LA, Jin SW, Jungblut B, Wehman A, Baier H, Audigier Y, Stainier DYR. The G-Protein Coupled Receptor Agtrl1b Regulates Early Development of Myocardial Progenitors. Dev Cell. 2007; 12(3):403-413.
  文献评价指标  
  下载次数:67次 浏览次数:7次