期刊论文详细信息
BMC Genomics
Genome-wide DNA methylation changes in skeletal muscle between young and middle-aged pigs
Mingzhou Li5  Xuewei Li5  Jinyong Wang1  Li Zhu5  An’an Jiang5  Junfang Shen2  Bangsheng Zhong5  Wei Li5  Yihui Liu5  Yanmei Xie5  Lu Bai5  Hongmei Wang5  Lei Chen1  Ping’er Lou5  Yudong Xia3  Zhi Jiang4  Long Jin5 
[1] Chongqing Academy of Animal Science, Chongqing 402460, China;BGI-Tech, BGI-Shenzhen, Shenzhen 518083, China;E-GENE, Shenzhen, Guangdong 518173, China;Novogene Bioinformatics Institute, Beijing 100083, China;Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
关键词: DNMTs;    MeDIP-seq;    Aging;    Pig;    Skeletal muscle;    DNA methylation;   
Others  :  1216296
DOI  :  10.1186/1471-2164-15-653
 received in 2014-05-01, accepted in 2014-07-31,  发布年份 2014
PDF
【 摘 要 】

Background

Age-related physiological, biochemical and functional changes in mammalian skeletal muscle have been shown to begin at the mid-point of the lifespan. However, the underlying changes in DNA methylation that occur during this turning point of the muscle aging process have not been clarified. To explore age-related genomic methylation changes in skeletal muscle, we employed young (0.5 years old) and middle-aged (7 years old) pigs as models to survey genome-wide DNA methylation in the longissimus dorsi muscle using a methylated DNA immunoprecipitation sequencing approach.

Results

We observed a tendency toward a global loss of DNA methylation in the gene-body region of the skeletal muscle of the middle-aged pigs compared with the young group. We determined the genome-wide gene expression pattern in the longissimus dorsi muscle using microarray analysis and performed a correlation analysis using DMR (differentially methylated region)-mRNA pairs, and we found a significant negative correlation between the changes in methylation levels within gene bodies and gene expression. Furthermore, we identified numerous genes that show age-related methylation changes that are potentially involved in the aging process. The methylation status of these genes was confirmed using bisulfite sequencing PCR. The genes that exhibited a hypomethylated gene body in middle-aged pigs were over-represented in various proteolysis and protein catabolic processes, suggesting an important role for these genes in age-related muscle atrophy. In addition, genes associated with tumorigenesis exhibited aged-related differences in methylation and expression levels, suggesting an increased risk of disease associated with increased age.

Conclusions

This study provides a comprehensive analysis of genome-wide DNA methylation patterns in aging pig skeletal muscle. Our findings will serve as a valuable resource in aging studies, promoting the pig as a model organism for human aging research and accelerating the development of comparative animal models in aging research.

【 授权许可】

   
2014 Jin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150630002647515.pdf 894KB PDF download
Figure 6. 57KB Image download
Figure 5. 21KB Image download
Figure 4. 66KB Image download
Figure 3. 84KB Image download
Figure 2. 51KB Image download
Figure 1. 29KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Wilson VL, Smith RA, Ma S, Cutler RG: Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem 1987, 262(21):9948-9951.
  • [2]Movassagh M, Choy MK, Goddard M, Bennett MR, Down TA, Foo RS: Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PloS One 2010, 5(1):e8564.
  • [3]Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J: Epigenetic changes in Alzheimer's disease: decrements in DNA methylation. Neurobiol Aging 2010, 31(12):2025-2037.
  • [4]Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J, Zhang N, Liang S, Donehower LA, Issa JP: Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 2010, 20(3):332-340.
  • [5]Serra C, Tangherlini F, Rudy S, Lee D, Toraldo G, Sandor NL, Zhang A, Jasuja R, Bhasin S: Testosterone improves the regeneration of old and young mouse skeletal muscle. J Gerontol A Biol 2013, 68(1):17-26.
  • [6]Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan D, Megens HJ, Li S, Larkin DM, Kim H, Frantz LA, Caccamo M, Ahn H, Aken BL, Anselmo A, Anthon C, Auvil L, Badaoui B, Beattie CW, Bendixen C, Berman D, Blecha F, Blomberg J, Bolund L, Bosse M, Botti S, Bujie Z, et al.: Analyses of pig genomes provide insight into porcine demography and evolution. Nature 2012, 491(7424):393-398.
  • [7]Spurlock ME, Gabler NK: The development of porcine models of obesity and the metabolic syndrome. J Nutr 2008, 138(2):397-402.
  • [8]Li M, Wu H, Luo Z, Xia Y, Guan J, Wang T, Gu Y, Chen L, Zhang K, Ma J, Liu Y, Zhong Z, Nie J, Zhou S, Mu Z, Wang X, Qu J, Jing L, Wang H, Huang S, Yi N, Wang Z, Xi D, Wang J, Yin G, Wang L, Li N, Jiang Z, Lang Q, Xiao H, et al.: An atlas of DNA methylomes in porcine adipose and muscle tissues. Nat Commun 2012, 3:850.
  • [9]Fan N, Lai L: Genetically Modified Pig Models for Human Diseases. J Genet Genomics 2013, 40(2):67-73.
  • [10]Peters RC, Johnson WA: Aging and Miniature Swine Heart and Liver Plasma Membranes. In Advances in Swine in Biomedical Research, Volume 2. Edited by Tumbleson ME. New York: Springer; 1997:581-593.
  • [11]Bhathena S, Berlin E, Johnson W: The minipig as a model for the study of aging in humans: selective responses of hormones involved in carbohydrate and lipid metabolism in different sexes. In Advances in Swine in Biomedical Research, Volume 2. Edited by Bhathena SJ. New York: Plenum; 1996:571-580.
  • [12]Larsen MO, Rolin B, Wilken M, Carr RD, Svendsen O, Bollen P: Parameters of glucose and lipid metabolism in the male Gottingen minipig: influence of age, body weight, and breeding family. Comp Med 2001, 51(5):436-442.
  • [13]Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. Ca Cancer J Clin 2010, 60(5):277-300.
  • [14]Nair KS: Aging muscle. Am J Clin Nutr 2005, 81(5):953-963.
  • [15]Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, Puca AA, Sayols S, Pujana MA, Serra-Musach J, Iglesias-Platas I, Formiga F, Fernandez AF, Fraga MF, Heath SC, Valencia A, Gut IG, Wang J, Esteller M: Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A 2012, 109(26):10522-10527.
  • [16]Dirks A, Leeuwenburgh C: Apoptosis in skeletal muscle with aging. Am J Physiol Reg I 2002, 282(2):R519-R527.
  • [17]Navarro A, Lopez-Cepero JM, Sanchez del Pino MJ: Skeletal muscle and aging. Front Biosci 2001, 6:D26-D44.
  • [18]Janssen I, Heymsfield SB, Wang ZM, Ross R: Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol 2000, 89(1):81-88.
  • [19]Pollack M, Phaneuf S, Dirks A, Leeuwenburgh C: The role of apoptosis in the normal aging brain, skeletal muscle, and heart. Ann Ny Acad Sci 2002, 959:93-107.
  • [20]Kim GD, Ni J, Kelesoglu N, Roberts RJ, Pradhan S: Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. Embo J 2002, 21(15):4183-4195.
  • [21]Lopatina N, Haskell JF, Andrews LG, Poole JC, Saldanha S, Tollefsbol T: Differential maintenance and de novo methylating activity by three DNA methyltransferases in aging and immortalized fibroblasts. J Cell Biochem 2002, 84(2):324-334.
  • [22]Xiao Y, Word B, Starlard-Davenport A, Haefele A, Lyn-Cook BD, Hammons G: Age and gender affect DNMT3a and DNMT3b expression in human liver. Cell Biol Toxicol 2008, 24(3):265-272.
  • [23]Kim JK, Samaranayake M, Pradhan S: Epigenetic mechanisms in mammals. Cell Mol Life Sci 2009, 66(4):596-612.
  • [24]Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, Gilad Y, Pritchard JK: DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol 2011, 12(1):R10.
  • [25]Shoemaker R, Deng J, Wang W, Zhang K: Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res 2010, 20(7):883-889.
  • [26]Xia J, Han L, Zhao Z: Investigating the relationship of DNA methylation with mutation rate and allele frequency in the human genome. BMC Genomics 2012, 13(Suppl 8):S7.
  • [27]Mugal CF, Ellegren H: Substitution rate variation at human CpG sites correlates with non-CpG divergence, methylation level and GC content. Genome Biol 2011, 12(6):R58.
  • [28]Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF: Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010, 466(7303):253-257.
  • [29]Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schubeler D: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007, 39(4):457-466.
  • [30]Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH, Xie B, Daley GQ, Church GM: Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 2009, 27(4):361-368.
  • [31]Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Kin Sung KW, Rigoutsos I, Loring J, Wei CL: Dynamic changes in the human methylome during differentiation. Genome Res 2010, 20(3):320-331.
  • [32]Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP: The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 2009, 41(2):178-186.
  • [33]Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, Blasco MA: DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 2006, 8(4):416-424.
  • [34]Ng LJ, Cropley JE, Pickett HA, Reddel RR, Suter CM: Telomerase activity is associated with an increase in DNA methylation at the proximal subtelomere and a reduction in telomeric transcription. Nucleic Acids Res 2009, 37(4):1152-1159.
  • [35]Blasco MA: Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 2005, 6(8):611-622.
  • [36]Ji G, Liu K, Okuka M, Liu N, Liu L: Association of telomere instability with senescence of porcine cells. BMC Cell Biol 2012, 13:36.
  • [37]Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 2008, 452(7184):215-219.
  • [38]Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR: Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 2008, 133(3):523-536.
  • [39]Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, Coarfa C, Harris RA, Milosavljevic A, Troakes C, Al-Sarraj S, Dobson R, Schalkwyk LC, Mill J: Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 2012, 13(6):R43.
  • [40]Feber A, Wilson GA, Zhang L, Presneau N, Idowu B, Down TA, Rakyan VK, Noon LA, Lloyd AC, Stupka E, Schiza V, Teschendorff AE, Schroth GP, Flanagan A, Beck S: Comparative methylome analysis of benign and malignant peripheral nerve sheath tumors. Genome Res 2011, 21(4):515-524.
  • [41]Rao X, Evans J, Chae H, Pilrose J, Kim S, Yan P, Huang RL, Lai HC, Lin H, Liu Y, Miller D, Rhee JK, Huang YW, Gu F, Gray JW, Huang TM, Nephew KP: CpG island shore methylation regulates caveolin-1 expression in breast cancer. Oncogene 2013, 32(38):4519-4528.
  • [42]Lorincz MC, Dickerson DR, Schmitt M, Groudine M: Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 2004, 11(11):1068-1075.
  • [43]Carmeli E, Coleman R, Reznick AZ: The biochemistry of aging muscle. Exp Gerontol 2002, 37(4):477-489.
  • [44]de Magalhaes JP, Budovsky A, Lehmann G, Costa J, Li Y, Fraifeld V, Church GM: The Human Ageing Genomic Resources: online databases and tools for biogerontologists. Aging Cell 2009, 8(1):65-72.
  • [45]Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S: Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 2007, 39(1):61-69.
  • [46]Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M: FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 2007, 6(6):458-471.
  • [47]Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL: FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 2007, 6(6):472-483.
  • [48]Eash J, Olsen A, Breur G, Gerrard D, Hannon K: FGFR1 inhibits skeletal muscle atrophy associated with hindlimb suspension. BMC Musculoskel Dis 2007, 8:32.
  • [49]Giubellino A, Burke TR Jr, Bottaro DP: Grb2 signaling in cell motility and cancer. Expert Opin Ther Tar 2008, 12(8):1021-1033.
  • [50]Liu X, Liu M, Zhang J, Bai X, Ramos F, Van Remmen H, Richardson A, Liu FY, Dong LQ, Liu F: Downregulation of Grb2 contributes to the insulin-sensitizing effect of calorie restriction. Am J Physiol Endoc M 2009, 296(5):E1067-E1075.
  • [51]Morley JE: Diabetes and aging: epidemiologic overview. Clin Geriatr Med 2008, 24(3):395-405. v
  • [52]Fraga MF, Agrelo R, Esteller M: Cross-talk between aging and cancer: the epigenetic language. Ann Ny Acad Sci 2007, 1100:60-74.
  • [53]Hellman A, Chess A: Gene body-specific methylation on the active X chromosome. Science 2007, 315(5815):1141-1143.
  • [54]Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, Johnson BE, Fouse SD, Delaney A, Zhao Y, Olshen A, Ballinger T, Zhou X, Forsberg KJ, Gu J, Echipare L, O'Geen H, Lister R, Pelizzola M, Xi Y, Epstein CB, Bernstein BE, Hawkins RD, Ren B, Chung WY, Gu H, Bock C, Gnirke A, Zhang MQ, Haussler D, et al.: Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 2010, 28(10):1097-1105.
  • [55]Carmeli E, Reznick AZ, Coleman R, Carmeli V: Muscle strength and mass of lower extremities in relation to functional abilities in elderly adults. Gerontology 2000, 46(5):249-257.
  • [56]Zahn JM, Sonu R, Vogel H, Crane E, Mazan-Mamczarz K, Rabkin R, Davis RW, Becker KG, Owen AB, Kim SK: Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet 2006, 2(7):e115.
  • [57]Takahashi J, Misawa M, Iwahashi H: Oligonucleotide microarray analysis of age-related gene expression profiles in miniature pigs. PloS One 2011, 6(5):e19761.
  • [58]Zhao X, Mo D, Li A, Gong W, Xiao S, Zhang Y, Qin L, Niu Y, Guo Y, Liu X, Cong P, He Z, Wang C, Li J, Chen Y: Comparative analyses by sequencing of transcriptomes during skeletal muscle development between pig breeds differing in muscle growth rate and fatness. PloS One 2011, 6(5):e19774.
  • [59]Fraga MF, Esteller M: Epigenetics and aging: the targets and the marks. Trends Genet 2007, 23(8):413-418.
  • [60]Erkens T, Van Poucke M, Vandesompele J, Goossens K, Van Zeveren A, Peelman LJ: Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotechnol 2006, 6:41.
  • [61]Nygard AB, Jorgensen CB, Cirera S, Fredholm M: Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol Biol 2007, 8:67.
  • [62]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25(4):402-408.
  • [63]Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, Wang J: SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009, 25(15):1966-1967.
  • [64]Archibald AL, Bolund L, Churcher C, Fredholm M, Groenen MA, Harlizius B, Lee KT, Milan D, Rogers J, Rothschild MF, Uenishi H, Wang J, Schook LB: Pig genome sequence–analysis and publication strategy. BMC Genomics 2010, 11:438.
  • [65]Cawthon RM: Telomere measurement by quantitative PCR. Nucleic Acids Res 2002, 30(10):e47.
  • [66]Da Wei Huang BTS, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2008, 4(1):44-57.
  • [67]Saeed A, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M: TM4: a free, open-source system for microarray data management and analysis. Biotechniques 2003, 34(2):374.
  • [68]Bock C, Reither S, Mikeska T, Paulsen M, Walter J, Lengauer T: BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics 2005, 21(21):4067-4068.
  文献评价指标  
  下载次数:9次 浏览次数:8次