期刊论文详细信息
BMC Genomics
Genome-wide analysis of signatures of selection in populations of African honey bees (Apis mellifera) using new web-based tools
Webb Miller4  Christina M. Grozinger1  Stephen Schuster4  Daniel Masiga5  Maryann Frazier1  John McGraw2  Aakrosh Ratan4  Fiona Mumoki5  Elliud Muli6  Tracey Baumgarten1  Oscar C. Bedoya-Reina4  Harland M. Patch1  Elina L. Niño1  Zachary L. Fuller3 
[1] Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, PA, USA;Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA;Department of Biology, Pennsylvania State University, University Park, PA, USA;Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, PA, USA;The International Center of Insect Physiology and Ecology (icipe), Nairobi, Kenya;Department of Biological Sciences, South Eastern Kenya University (SEKU), Kitui, Kenya
关键词: Adaptive evolution;    Genome sequencing;    Galaxy;    Apis mellifera;   
Others  :  1218466
DOI  :  10.1186/s12864-015-1712-0
 received in 2014-12-26, accepted in 2015-06-22,  发布年份 2015
PDF
【 摘 要 】

Background

With the development of inexpensive, high-throughput sequencing technologies, it has become feasible to examine questions related to population genetics and molecular evolution of non-model species in their ecological contexts on a genome-wide scale. Here, we employed a newly developed suite of integrated, web-based programs to examine population dynamics and signatures of selection across the genome using several well-established tests, including FST , pN/pS, and McDonald-Kreitman. We applied these techniques to study populations of honey bees (Apis mellifera) in East Africa. In Kenya, there are several described A. mellifera subspecies, which are thought to be localized to distinct ecological regions.

Results

We performed whole genome sequencing of 11 worker honey bees from apiaries distributed throughout Kenya and identified 3.6 million putative single-nucleotide polymorphisms. The dense coverage allowed us to apply several computational procedures to study population structure and the evolutionary relationships among the populations, and to detect signs of adaptive evolution across the genome. While there is considerable gene flow among the sampled populations, there are clear distinctions between populations from the northern desert region and those from the temperate, savannah region. We identified several genes showing population genetic patterns consistent with positive selection within African bee populations, and between these populations and European A. mellifera or Asian Apis florea.

Conclusions

These results lay the groundwork for future studies of adaptive ecological evolution in honey bees, and demonstrate the use of new, freely available web-based tools and workflows (http://usegalaxy.org/r/kenyanbee) that can be applied to any model system with genomic information.

【 授权许可】

   
2015 Fuller et al.

【 预 览 】
附件列表
Files Size Format View
20150711020035913.pdf 2011KB PDF download
Fig. 6. 41KB Image download
Fig. 5. 31KB Image download
Fig. 4. 21KB Image download
Fig. 3. 81KB Image download
Fig. 2. 49KB Image download
Fig. 1. 68KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Orr HA. The genetic theory of adaptation: a brief history. Nat Rev Genet. 2005; 6(2):119-27.
  • [2]Stinchcombe JR, Hoekstra HE. Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity. 2008; 100(2):158-70.
  • [3]Nadeau NJ, Jiggins CD. A golden age for evolutionary genetics? Genomic studies of adaptation in natural populations. Trends Genetics TIG. 2010; 26(11):484-92.
  • [4]Stapley J, Reger J, Feulner PG, Smadja C, Galindo J, Ekblom R et al.. Adaptation genomics: the next generation. Trends Ecol Evol. 2010; 25(12):705-12.
  • [5]Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O et al.. Positive natural selection in the human lineage. Science. 2006; 312(5780):1614-20.
  • [6]Bedoya-Reina OC, Ratan A, Burhans R, Kim HL, Giardine B, Riemer C et al.. Galaxy tools to study genome diversity. Gigascience. 2013; 2(1):17.
  • [7]Ruttner F. Biogeography and taxonomy of honeybees. Springer, New York,; 1987.
  • [8]Whitfield CW, Behura SK, Berlocher SH, Clark AG, Johnston JS, Sheppard WS et al.. Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science. 2006; 314(5799):642-5.
  • [9]Hepburn RH, Radloff SE. Honeybees of Africa. Springer, New York; 1998.
  • [10]Arias MC, Sheppard WS. Molecular phylogenetics of honey bee subspecies (Apis mellifera L.) inferred from mitochondrial DNA sequence. Mol Phylogenet Evol. 1996; 5(3):557-66.
  • [11]Meixner MD, Leta MA, Koeniger N, Fuchs S. The honey bees of Ethiopia represent a new subspecies of Apis mellifera-Apis mellifera simensis n. ssp. Apidologie. 2011; 42(3):425-37.
  • [12]Muli E, Patch H, Frazier M, Frazier JL, Torto B, Baumgarten T et al.. Evaluation of distribution and impacts of parasites, pathogens, and pesticides on honey bee (Apis mellifera) populations in East Africa. PLoS One Revision. 2014; 9(4):e94459.
  • [13]Gruber K, Schöning C, Otte M, Kinuthia W, Hasselmann M. Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa. Ecol Evol. 2013; 3(10):3204-18.
  • [14]Winston ML. The Biology of the Honey Bee. Harvard University Press, Cambridge, MA; 1987.
  • [15]Mattila HR, Otis GW. Dwindling pollen resources trigger the transition to broodless populations of long-lived honeybees each autumn. Ecol Entomol. 2007; 32(5):496-505.
  • [16]Page RE, Peng CYS. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp Gerontol. 2001; 36(4-6):695-711.
  • [17]Fluri P, Luscher M, Wille H, Gerig L. Changes in weight of the pharyngeal gland and hemolymph titers of juvenile hormone, protein and vitellogenin in worker honey bees. J Insect Physiol. 1982; 28(1):61-8.
  • [18]Huang ZY, Robinson GE. Seasonal-changes in juvenile-hormone titers and rates of biosynthesis in honey-bees. J Comparative Physiol B-Biochem Syst Environ Physiol. 1995; 165(1):18-28.
  • [19]Huang ZY, Robinson GE. Honeybee colony integration - worker worker interactions mediate hormonally regulated plasticity in division-of-labor. Proc Natl Acad Sci U S A. 1992; 89(24):11726-9.
  • [20]Huang ZY, Robinson GE. Regulation of honey bee division of labor by colony age demography. Behav Ecol Sociobiol. 1996; 39(3):147-58.
  • [21]Leoncini I, Le Conte Y, Costagliola G, Plettner E, Toth AL, Wang MW et al.. Regulation of behavioral maturation by a primer pheromone produced by adult worker honey bees. Proc Natl Acad Sci U S A. 2004; 101(50):17559-64.
  • [22]Grozinger CM, Richards J, Mattila HR. From molecules to societies: mechanisms regulating swarming behavior in honey bees (Apis spp). Apidologie. 2013; 14:799.
  • [23]Otis GW, Winston ML, Taylor OR. Engorgement and dispersal of Africanized honeybee swarms. J Apic Res. 1981; 20(1):3-11.
  • [24]Weinstock GM, Robinson GE, Gibbs RA, Worley KC, Evans JD, Maleszka R et al.. Insights into social insects from the genome of the honeybee Apis mellifera. Nature. 2006; 443(7114):931-49.
  • [25]Zayed A, Whitfield CW. A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera. Proc Natl Acad Sci U S A. 2008; 105(9):3421-6.
  • [26]Wallberg A, Han F, Wellhagen G, Dahle B, Kawata M, Haddad N et al.. A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nat Genet. 2014; 46(10):1081-8.
  • [27]Kent CF, Minaei S, Harpur BA, Zayed A. Recombination is associated with the evolution of genome structure and worker behavior in honey bees. Proc Natl Acad Sci U S A. 2012; 109(44):18012-7.
  • [28]Harpur BA, Kent CF, Molodtsova D, Lebon JM, Alqarni AS, Owayss AA et al.. Population genomics of the honey bee reveals strong signatures of positive selection on worker traits. Proc Natl Acad Sci U S A. 2014; 111(7):2614-9.
  • [29]Fumagalli M. Assessing the effect of sequencing depth and sample size in population genetics inferences. PLoS One. 2013; 8(11):e79667.
  • [30]Sherwin CMC SB, Duncan IJ, Erhard HW, Lay DC, Mench JA, O’Connor CE et al.. Guideline for the ethical use of animals in applied ethology studies. Appl Anim Behav Sci. 2003; 81(3):291-305.
  • [31]Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25(14):1754-60.
  • [32]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al.. Genome project data processing S: the sequence alignment/Map format and SAMtools. Bioinformatics. 2009; 25(16):2078-9.
  • [33]Reich D, Thangaraj K, Patterson N, Price AL, Singh L. Reconstructing Indian population history. Nature. 2009; 461(7263):489-94.
  • [34]Howe K, Bateman A, Durbin R. QuickTree: building huge Neighbour-Joining trees of protein sequences. Bioinformatics. 2002; 18(11):1546-7.
  • [35]Thompson JD, Higgins DG, Gibson TJ. Clustal-W - improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific Gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22(22):4673-80.
  • [36]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28(10):2731-9.
  • [37]Felsenstein J. Confidence-limits on phylogenies with a molecular clock. Syst Zool. 1985; 34(2):152-61.
  • [38]Elsik CG, Worley KC, Bennett AK, Beye M, Camara F, Childers CP et al.. Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics. 2014; 15:86.
  • [39]Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986; 3(5):418-26.
  • [40]Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989; 123:585-95.
  • [41]Zeng K, Fu YX, Shi S, Wu CI. Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics. 2006; 174(3):1431-9.
  • [42]Fay JC, Wu CI. Hitchhiking under positive Darwinian selection. Genetics. 2000; 155(3):1405-13.
  • [43]Nielsen R, Williamson S, Kim Y, Hubisz MJ, Clark AG, Bustamante C. Genomic scans for selective sweeps using SNP data. Genome Res. 2005; 15(11):1566-75.
  • [44]Hudson RR. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics. 2002; 18(2):337-8.
  • [45]Miller W, Schuster SC, Welch AJ, Ratan A, Bedoya-Reina OC, Zhao FQ et al.. Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change. Proc Natl Acad Sci U S A. 2012; 109(36):E2382-90.
  • [46]da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4(1):44-57.
  • [47]da Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009; 37(1):1-13.
  • [48]Funk DJ, Omland KE. Species-level paraphyly and polyphyly: Frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol S. 2003; 34:397-423.
  • [49]Toews DPL, Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol. 2012; 21(16):3907-30.
  • [50]McKay BD, Zink RM. The causes of mitochondrial DNA gene tree paraphyly in birds. Mol Phylogenet Evol. 2010; 54(2):647-50.
  • [51]Jha S, Kremen C. Urban land use limits regional bumble bee gene flow. Mol Ecol. 2013; 22(9):2483-95.
  • [52]Hughes AL. Near neutrality: leading edge of the neutral theory of molecular evolution. Ann N Y Acad Sci. 2008; 1133:162-79.
  • [53]Kimura M. The neutral theory of molecular evolution. Cambridge Cambridgeshire. Cambridge University Press, New York; 1983.
  • [54]Yang Z, Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol. 2000; 17(1):32-43.
  • [55]Huguet G, Nava C, Lemiere N, Patin E, Laval G, Ey E et al.. Heterogeneous pattern of selective pressure for PRRT2 in human populations, but no association with autism spectrum disorders. PLoS One. 2014; 9(3):e88600.
  • [56]Harris SE, Munshi-South J, Obergfell C, O’Neill R. Signatures of rapid evolution in urban and rural transcriptomes of white-footed mice (Peromyscus leucopus) in the New York metropolitan area. PLoS One. 2013; 8(8):e74938.
  • [57]Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A et al.. Genomic variation landscape of the human gut microbiome. Nature. 2013; 493(7430):45-50.
  • [58]Gonzalez J, Macpherson JM, Petrov DA. A recent adaptive transposable element insertion near highly conserved developmental loci in Drosophila melanogaster. Mol Biol Evol. 2009; 26(9):1949-61.
  • [59]Metz EC, Palumbi SR. Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin. Mol Biol Evol. 1996; 13(2):397-406.
  • [60]Tanaka T, Nei M. Positive darwinian selection observed at the variable-region genes of immunoglobulins. Mol Biol Evol. 1989; 6(5):447-59.
  • [61]Goldman N, Yang Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol. 1994; 11(5):725-36.
  • [62]Mugal CF, Wolf JB, Kaj I. Why time matters: codon evolution and the temporal dynamics of dN/dS. Mol Biol Evol. 2014; 31(1):212-31.
  • [63]Kryazhimskiy S, Plotkin JB. The population genetics of dN/dS. PLoS Genet. 2008; 4(12):e1000304.
  • [64]Simkin A, Wong A, Poh YP, Theurkauf WE, Jensen JD. Recurrent and recent selective sweeps in the piRNA pathway. Evolution. 2013; 67(4):1081-90.
  • [65]Woodard SH, Fischman BJ, Venkat A, Hudson ME, Varala K, Cameron SA et al.. Genes involved in convergent evolution of eusociality in bees. Proc Natl Acad Sci U S A. 2011; 108(18):7472-7.
  • [66]Kettner A, Hughes GJ, Frutiger S, Astori M, Roggero M, Spertini F et al.. Api m 6: a new bee venom allergen. J Allergy Clin Immunol. 2001; 107(5):914-20.
  • [67]Peiren N, de Graaf DC, Evans JD, Jacobs FJ. Genomic and transcriptional analysis of protein heterogeneity of the honeybee venom allergen Api m 6. Insect Mol Biol. 2006; 15(5):577-81.
  • [68]Hauser F, Cazzamali G, Williamson M, Blenau W, Grimmelikhuijzen CJP. A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog Neurobiol. 2006; 80(1):1-19.
  • [69]Hughes AL, Friedman R, Rivailler P, French JO. Synonymous and nonsynonymous polymorphisms versus divergences in bacterial genomes. Mol Biol Evol. 2008; 25(10):2199-209.
  • [70]McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991; 351(6328):652-4.
  • [71]Shapiro JA, Huang W, Zhang C, Hubisz MJ, Lu J, Turissini DA et al.. Adaptive genic evolution in the Drosophila genomes. Proc Natl Acad Sci U S A. 2007; 104(7):2271-6.
  • [72]Sokolowski MB. Drosophila: genetics meets behaviour. Nat Rev Genet. 2001; 2(11):879-90.
  • [73]Sarov-Blat L, So WV, Liu L, Rosbash M. The Drosophila takeout gene is a novel molecular link between circadian rhythms and feeding behavior. Cell. 2000; 101(6):647-56.
  • [74]Hagai T, Cohen M, Bloch G. Genes encoding putative Takeout/juvenile hormone binding proteins in the honeybee (Apis mellifera) and modulation by age and juvenile hormone of the takeout-like gene GB19811. Insect Biochem Mol Biol. 2007; 37(7):689-701.
  • [75]Oleksyk TK, Zhao K, De La Vega FM, Gilbert DA, O’Brien SJ, Smith MW. Identifying selected regions from heterozygosity and divergence using a light-coverage genomic dataset from two human populations. PLoS One. 2008; 3(3):e1712.
  • [76]Lencz T, Lambert C, DeRosse P, Burdick KE, Morgan TV, Kane JM et al.. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc Natl Acad Sci U S A. 2007; 104(50):19942-7.
  • [77]Szpiech ZA, Xu JS, Pemberton TJ, Peng WP, Zollner S, Rosenberg NA et al.. Long runs of homozygosity Are enriched for deleterious variation. Am J Hum Genet. 2013; 93(1):90-102.
  • [78]Ament SA, Corona M, Pollock HS, Robinson GE. Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc Natl Acad Sci U S A. 2008; 105(11):4226-31.
  • [79]de Azevedo SV, Hartfelder K. The insulin signaling pathway in honey bee (Apis mellifera) caste development - differential expression of insulin-like peptides and insulin receptors in queen and worker larvae. J Insect Physiol. 2008; 54(6):1064-71.
  • [80]Behrens D, Huang Q, Gessner C, Rosenkranz P, Frey E, Locke B et al.. Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor. Ecol Evol. 2011; 1(4):451-8.
  • [81]Frazier M, Muli E, Conklin T, Schmehl D, Torto B, Frazier J et al.. A scientific note on Varroa destructor found in East Africa; threat or opportunity? Apidologie. 2010; 41(4):463-5.
  • [82]Keller MC, Simonson MA, Ripke S, Neale BM, Gejman PV, Howrigan DP et al.. Runs of homozygosity implicate autozygosity as a schizophrenia risk factor. PLoS Genet. 2012; 8(4):e1002656.
  • [83]Purfield DC, Berry DP, McParland S, Bradley DG. Runs of homozygosity and population history in cattle. BMC Genet. 2012; 13:70.
  • [84]MacLeod IM, Larkin DM, Lewin HA, Hayes BJ, Goddard ME. Inferring demography from runs of homozygosity in whole-genome sequence, with correction for sequence errors. Mol Biol Evol. 2013; 30(9):2209-23.
  • [85]Tarpy DR. Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. P Roy Soc B-Biol Sci. 2003; 270(1510):99-103.
  • [86]Jaffe R, Dietemann V, Crewe RM, Moritz RFA. Temporal variation in the genetic structure of a drone congregation area: an insight into the population dynamics of wild African honeybees (Apis mellifera scutellata). Mol Ecol. 2009; 18(7):1511-22.
  • [87]Chen H, Patterson N, Reich D. Population differentiation as a test for selective sweeps. Genome Res. 2010; 20(3):393-402.
  • [88]Willing E-M, Dreyer C, van Oosterhout C. Genetic differentiation measured by FST Do Not necessarily require large sample sizes when using many SNP markers. PLoS One. 2012; 8:e42649.
  • [89]Walter MF, Zeineh LL, Black BC, McIvor WE, Wright TR, Biessmann H. Catecholamine metabolism and in vitro induction of premature cuticle melanization in wild type and pigmentation mutants of Drosophila melanogaster. Arch Insect Biochem Physiol. 1996; 31(2):219-33.
  • [90]Wittkopp PJ, True JR, Carroll SB. Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development. 2002; 129(8):1849-58.
  • [91]Pool JE, Aquadro CF. The genetic basis of adaptive pigmentation variation in Drosophila melanogaster. Mol Ecol. 2007; 16:2844-51.
  • [92]Viljakainen L, Evans JD, Hasselmann M, Rueppell O, Tingek S, Pamilo P. Rapid evolution of immune proteins in social insects. Mol Biol Evol. 2009; 26(8):1791-801.
  • [93]Evans JD, Aronstein K, Chen YP, Hetru C, Imler JL, Jiang H et al.. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol Biol. 2006; 15(5):645-56.
  • [94]Richard FJ, Holt HL, Grozinger CM. Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera). BMC Genomics. 2012; 13:558.
  • [95]Biswas S, Russell RJ, Jackson CJ, Vidovic M, Ganeshina O, Oakeshott JG et al.. Bridging the synaptic gap: neuroligins and neurexin I in Apis mellifera. PLoS One. 2008; 3(10):e3542.
  • [96]Oleksyk TK, Smith MW, O’Brien SJ. Genome-wide scans for footprints of natural selection. Philos Trans R Soc Lond B Biol Sci. 2010; 365:185-205.
  • [97]Kim Y, Stephan W. Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics. 2002; 160(2):765-77.
  • [98]Maynard-Smith J, Haigh J. Hitch-hiking effect of a favorable gene. Genet Res. 1974; 23(1):23-35.
  • [99]Ramirez-Soriano A, Ramos-Onsins SE, Rozas J, Calafell F, Navarro A. Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics. 2008; 179(1):555-67.
  • [100]Aris-Brosou S, Excoffier L. The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Mol Biol Evol. 1996; 13(3):494-504.
  • [101]Lilley BN, Ploegh HL. A membrane protein required for dislocation of misfolded proteins from the ER. Nature. 2004; 429(6994):834-40.
  • [102]Zeng K, Shi S, Wu C. Compound tests for the detection of hitchhiking under positive selection. Mol Biol Evol. 2007; 24(8):1898-908.
  • [103]Charlesworth D, Charlesworth B, Morgan MT. The pattern of neutral molecular variation under the background selection model. Genetics. 1995; 141(4):1619-32.
  • [104]Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell. 2008; 134(1):25-36.
  • [105]Pavlidis P, Jensen JD, Stephan W, Stamatakis A. A critical assessment of storytelling: gene ontology categories and the importance of validating genomic scans. Mol Biol Evol. 2012; 29(10):3237-48.
  • [106]Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci. 2007; 11:1633-44.
  • [107]Merte J, Nichols R. Drosophila melanogaster myotropins have unique functions and signaling pathways. Peptides. 2002; 23:757-63.
  文献评价指标  
  下载次数:0次 浏览次数:2次