期刊论文详细信息
BMC Gastroenterology
Abnormal fecal microbiota community and functions in patients with hepatitis B liver cirrhosis as revealed by a metagenomic approach
Jing Yuan2  Liuyu Huang2  Juqiang Han1  Xuelian Li2  Simiao Wang2  Wei Liu2  Xuesong Wang2  Zhan Yang2  Dayang Zou2  Xiabei Yan2  Xiao Wei2 
[1] Institute of Hepatology, Beijing Military General Hospital, No. 5 Dongsishitiao South Gate Warehouse, Dongcheng District, Beijing 100700, China;Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda street, Fengtai District, Beijing 100071, China
关键词: Metabolism;    Microbiota;    Cirrhosis;    Metagenome;   
Others  :  856782
DOI  :  10.1186/1471-230X-13-175
 received in 2013-09-06, accepted in 2013-12-23,  发布年份 2013
【 摘 要 】

Background

Assessment and characterization of human colon microbiota is now a major research area in human diseases, including in patients with hepatitis B liver cirrhosis (HBLC).

Methods

We recruited 120 patients with HBLC and 120 healthy controls. The fecal microbial community and functions in the two groups were analyzed using high-throughput Solexa sequencing of the complete metagenomic DNA and bioinformatics methods.

Results

Community and metabolism-wide changes of the fecal microbiota in 20 HBLC patients and 20 healthy controls were observed and compared. A negative correlation was observed between the Child-Turcotte-Pugh scores and Bacteroidetes (P < 0.01), whereas a positive correlation was observed between the scores and Enterobacteriaceae and Veillonella (P < 0.01). Analysis of the additional 200 fecal microbiota samples demonstrated that these intestinal microbial markers might be useful for distinguishing liver cirrhosis microbiota samples from normal ones. The functional diversity was significantly reduced in the fecal microbiota of cirrhotic patients compared with in the controls. At the module or pathway levels, the fecal microbiota of the HBLC patients showed enrichment in the metabolism of glutathione, gluconeogenesis, branched-chain amino acid, nitrogen, and lipid (P < 0.05), whereas there was a decrease in the level of aromatic amino acid, bile acid and cell cycle related metabolism (P < 0.05).

Conclusions

Extensive differences in the microbiota community and metabolic potential were detected in the fecal microbiota of cirrhotic patients. The intestinal microbial community may act as an independent organ to regulate the body’s metabolic balance, which may affect the prognosis for HBLC patients.

【 授权许可】

   
2013 Wei et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 3. 38KB Image download
65KB Image download
61KB Image download
80KB Image download
【 图 表 】

Figure 3.

【 参考文献 】
  • [1]O’Hara AM, Shanahan F: The gut flora as a forgotten organ. EMBO Rep 2006, 7:688-693.
  • [2]Martínez I, Muller CE, Walter J: Long-term temporal analysis of the human fecal microbiota revealed a stable core of dominant bacterial species. PLoS One 2013, 8:e69621.
  • [3]Ley RE, Peterson DA, Gordon JI: Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006, 124:837-848.
  • [4]Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA: Diversity of the human intestinal microbial flora. Science 2005, 308:1635-1638.
  • [5]Ishikawa E, Matsuki T, Kubota H, Makino H, Sakai T, Oishi K, Kushiro A, Fujimoto J, Watanabe K, Watanuki M, Tanaka R: Ethnic diversity of gut microbiota: species characterization of Bacteroides fragilis group and genus Bifidobacterium in healthy Belgian adults, and comparison with data from Japanese subjects. J Biosci Bioeng 2013, 116:265-270.
  • [6]Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI: Host-bacterial mutualism in the human intestine. Science 2005, 307:1915-1920.
  • [7]Hooper LV, Midtvedt T, Gordon JI: How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 2002, 22:283-307.
  • [8]Chen Y, Yang F, Lu H, Wang B, Chen Y, Lei D, Wang Y, Zhu B, Li L: Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 2011, 54:562-572.
  • [9]Dilger K, Hohenester S, Winkler-Budenhofer U, Bastiaansen BA, Schaap FG, Rust C, Beuers U: Effect of ursodeoxycholic acid on bile acid profiles and intestinal detoxification machinery in primary biliary cirrhosis and health. J Hepatol 2012, 57:133-140.
  • [10]Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO: Development of the human infant fecal microbiota. PLoS Biol 2007, 5:e177.
  • [11]Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans AD, de Vos WM: Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 2002, 68:3401-3407.
  • [12]Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J: Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 2006, 5:205-211.
  • [13]Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, et al.: A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464:59-68.
  • [14]Zhu W, Lomsadze A, Borodovsky M: Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 2010, 38:e132.
  • [15]Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, et al.: A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490:55-60.
  • [16]Jensen LJ, Julien P, Kuhn M, von Mering C, Muller J, Doerks T, Bork P: eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res 2008, 36:D250-D254.
  • [17]Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource for deciphering the genome. Nucleic Acids Res 2004, 32:D277-D280.
  • [18]Bartosch S, Fite A, Macfarlane GT, McMurdo ME: Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 2004, 70:3575-3581.
  • [19]Rinttilä T, Kassinen A, Malinen E, Krogius L, Palva A: Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 2004, 97:1166-1177.
  • [20]Song Y, Liu C, Finegold SM: Real-Time PCR Quantitation of Clostridia in Feces of Autistic Children. Appl Environ Microbiol 2004, 70:6459-6465.
  • [21]Storey JD: A direct approach to false discovery rates. J R Stat Soc Series B Stat Methodol 2002, 64:479-498.
  • [22]Zhao HY, Wang HJ, Lu Z, Xu SZ: Intestinal microflora in patients with liver cirrhosis. Chin J Dig Dis 2004, 5:64-67.
  • [23]Ridlon JM, Kang DJ, Hylemon PB: Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006, 47:241-259.
  • [24]Tanaka H, Hashiba H, Kok J, Mierau I: Bile salt hydrolase of Bifidobacterium longum biochemical and genetic characterization. Appl Environ Microbiol 2000, 66:2502-2512.
  • [25]Ridlon JM, Kang DJ, Hylemon PB: Isolation and characterization of a bile acid inducible 7alpha-dehydroxylating operon in Clostridium hylemonae TN271. Anaerobe 2010, 16:137-146.
  文献评价指标  
  下载次数:22次 浏览次数:6次