| BMC Musculoskeletal Disorders | |
| Comparative study of serum proteomes in Legg-Calve-Perthes disease | |
| Chuanyi Bai2  Hang Gao1  Xiaoqian Dang2  Qichun Song2  Wusheng Miao3  Kunzheng Wang2  Longbin Yin2  Lihong Fan2  Ruiyu Liu2  | |
| [1] Research Center for Proteome Analysis, Shanghai Institutes for Biological5 Sciences, Chinese Academy of Sciences, Shanghai, P. R China;Department of Orthopaedic, the Second Hospital Affilicated to Medical College, Xi’an Jiaotong University, No.157, Xiwu Road, Xi’an 710004, Shaanxi, P. R China;Department of Pediatric Orthopaedic, Hong-Hui Hospital, Medical College of Xi’an Jiaotong University, No. 76 Nanguo Road, Nanshao Men, Beilin District, Xi’an 710054, P. R China | |
| 关键词: Lipid metabolism; Isobaric tags for relative and absolute quantification; Serum proteome; Legg-Calve-Perthes disease; | |
| Others : 1232895 DOI : 10.1186/s12891-015-0730-z |
|
| received in 2015-02-24, accepted in 2015-09-21, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Legg-Calve-Perthes Disease (LCPD) is an idiopathic osteonecrosis of the developing femoral head complicated by pain and disability of the hip joint. To date, the pathological mechanisms of LCPD are not well-known. This study screened the changes in serum protein expression in patients with LCPD.
Methods
Age- and sex-matched serum samples from 10 control subjects and 10 patients with LCPD were compared using the isobaric tags for relative and absolute quantification (iTRAQ) technique. Gene ontology analyses, KEGG pathway and functional network analyses were performed. Proteins of interest with large differences in expression, S100-A8, alpha-1-acid glycoprotein 1, haptoglobin and apolipoprotein E, were compared by western blotting.
Results
The disease/control ratios showed 26 proteins were significantly differentially expressed (all p < 0.05). Including higher abundances of complement factor H (1.44), complement C4-B (1.45), isocitrate dehydrogenase [NAD] subunit alpha (2.7) alpha-1-acid glycoprotein 1 (1.87), heptoglobin (1.53) and Ig lambda-2 chain C regions (1.46), and lower levels of apolipoprotein E (0.50), apolipoprotein F (0.60), apolipoprotein C-III (0.69), S100-A8 (0.73), S100-A9 (0.75) and prothrombin (0.77) in LCPD than in controls. The alpha-1-acid glycoprotein 1 and haptoglobin increases, and apolipoprotein E and S100-A8 decreases were confirmed by western blot. KEGG pathway analysis revealed these proteins were related to the complement and coagulation cascades, Staphylococcus aureus infection, PPAR signaling, fat digestion and absorption, and vitamin digestion and absorption. Functional network analysis suggested that the proteins were involved in lipid regulation.
Conclusions
The complement and coagulation cascades, and abnormal lipid metabolism may be involved in the pathogenesis of LCPD.
【 授权许可】
2015 Liu et al.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20151116095025840.pdf | 976KB | ||
| Fig. 4. | 32KB | Image | |
| Fig. 3. | 20KB | Image | |
| Fig. 2. | 13KB | Image | |
| Fig. 1. | 56KB | Image |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
【 参考文献 】
- [1]Perry DC, Machin DM, Pope D, Bruce CE, Dangerfield P, Platt MJ et al.. Racial and geographic factors in the incidence of Legg-Calvé-Perthes’ disease: a systematic review. Am J Epidemiol. 2012; 175(3):159-66.
- [2]Guille JT, Lipton GE, Szöke G, Bowen JR, Harcke HT, Glutting JJ. Legg-Calvé-Perthes disease in girls. A comparison of the results with those seen in boys. J Bone Joint Surg Am. 1998; 80(9):1256-63.
- [3]Shah H. Perthes disease: evaluation and management. Orthop Clin North Am. 2014; 45(1):87-97.
- [4]Aksoy MC, Aksoy DY, Haznedaroglu IC, Sayinalp N, Kirazli S, Alpaslan M. Thrombomodulin and GFC levels in Legg-Calve-Perthes disease. Hematology. 2008; 13(6):324-8.
- [5]Vosmaer A, Pereira RR, Koenderman JS, Rosendaal FR, Cannegieter SC. Coagulation abnormalities in Legg-Calvé-Perthes disease. J Bone Joint Surg Am. 2010; 92(1):121-8.
- [6]Balasa VV, Gruppo RA, Glueck CJ, Wang P, Roy DR, Wall EJ et al.. Legg-Calve-Perthes disease and thrombophilia. J Bone Joint Surg Am. 2004; 86-A(12):2642-7.
- [7]Atsumi T, Yamano K, Muraki M, Yoshihara S, Kajihara T. The blood supply of the lateral epiphyseal arteries in Perthes’ disease. J Bone Joint Surg Br. 2000; 82(3):392-8.
- [8]Gaĭko GV, Goncharova LD, Zolotukhin SE, Donchenko LI. [Mechanism of early metabolism disorders and immunological reactivity in children with Perthes disease]. Lik Sprava. 2001; 1:56-61.
- [9]Lee JH, Zhou L, Kwon KS, Lee D, Park BH, Kim JR. Role of leptin in legg-calvé-perthes disease. J Orthop Res. 2013; 31(10):1605-10.
- [10]Perry DC, Green DJ, Bruce CE, Pope D, Dangerfield P, Platt MJ et al.. Abnormalities of vascular structure and function in children with Perthes disease. Pediatrics. 2012; 130(1):e126-31.
- [11]Kamiya N, Shafer S, Oxendine I, Mortlock DP, Chandler RL, Oxburgh L et al.. Acute BMP2 upregulation following induction of ischemic osteonecrosis in immature femoral head. Bone. 2013; 53(1):239-47.
- [12]Kim HK, Bian H, Randall T, Garces A, Gerstenfeld LC, Einhorn TA. Increased VEGF expression in the epiphyseal cartilage after ischemic necrosis of the capital femoral epiphysis. J Bone Miner Res. 2004; 19(12):2041-8.
- [13]Hofstaetter JG, Roschger P, Klaushofer K, Kim HK. Increased matrix mineralization in the immature femoral head following ischemic osteonecrosis. Bone. 2010; 46(2):379-85.
- [14]Zhang H, Zhang L, Wang J, Ma Y, Zhang J, Mo F et al.. Proteomic analysis of bone tissues of patients with osteonecrosis of the femoral head. OMICS. 2009; 13(6):453-66.
- [15]Wu RW, Wang FS, Ko JY, Wang CJ, Wu SL. Comparative serum proteome expression of osteonecrosis of the femoral head in adults. Bone. 2008; 43(3):561-6.
- [16]Wiśniewski JR, Zougman A, Mann M. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res. 2009; 8(12):5674-8.
- [17]Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S et al.. Web Presence Working Group. AmiGO: online access to ontology and annotation data. Bioinformatics. 2009; 25(2):288-9.
- [18]Khatri P, Bhavsar P, Bawa G, Draghici S. Onto-Tools: an ensemble of web-accessible, ontology-based tools for the functional design and interpretation of high-throughput gene expression experiments. Nucleic Acids Res. 2004; 1(32):W449-56.
- [19]Catterall A. The natural history of Perthes’ disease. J Bone Joint Surg Br. 1971; 53(1):37-53.
- [20]Yang Y, Bu D, Zhao X, Sun P, Wang J, Zhou L. Proteomic analysis of cow, yak, buffalo, goat and camel milk whey proteins: quantitative differential expression patterns. J Proteome Res. 2013; 512(4):1660-7.
- [21]Unwin RD, Griffiths JR, Whetton AD. Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC-MS/MS. Nat Protoc. 2010; 5(9):1574-82.
- [22]von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M et al.. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005; 1(33):D433-7.
- [23]Kim SY, Jeoung NH, Oh CJ, Choi YK, Lee HJ, Kim HJ et al.. Activation of NAD (P) H:quinone oxidoreductase 1 prevents arterial restenosis by suppressing vascular smooth muscle cell proliferation. Circ Res. 2009; 104(7):842-50.
- [24]Okazaki S, Nishitani Y, Nagoya S, Kaya M, Yamashita T, Matsumoto H. Femoral head osteonecrosis can be caused by disruption of the systemic immune response via the toll-like receptor 4 signalling pathway. Rheumatology (Oxford). 2009; 48(3):227-32.
- [25]Srzentić S, Spasovski V, Spasovski D, Zivković Z, Matanović D, Bascarević Z et al.. Association of gene variants in TLR4 and IL-6 genes with Perthes disease. Srp Arh Celok Lek. 2014; 142(7–8):450-6.
- [26]Wang Q, Rozelle AL, Lepus CM, Scanzello CR, Song JJ, Larsen DM et al.. Identification of a central role for complement in osteoarthritis. Nat Med. 2011; 17(12):1674-9.
- [27]John T, Stahel PF, Morgan SJ, Schulze-Tanzil G. Impact of the complement cascade on posttraumatic cartilage inflammation and degradation. Histol Histopathol. 2007; 22(7):781-90.
- [28]Zilkens C, Holstein A, Bittersohl B, Jäger M, Haamberg T, Miese F et al.. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in the long-term follow-up after Perthes disease. J Pediatr Orthop. 2010; 30(2):147-53.
- [29]Orfanos I, Magkou C, Anastasopoulos I, Karanikas E, Sitaras NM. Urine glycosaminoglycans in children with transient hip synovitis and Perthes disease. J Pediatr Orthop B. 2005; 14(2):92-6.
- [30]Eckerwall G, Lohmander LS, Wingstrand H. Increased levels of proteoglycan fragments and stromelysin in hip joint fluid in Legg-Calvé-Perthes disease. J Pediatr Orthop. 1997; 17(2):266-9.
- [31]Zreiqat H, Howlett CR, Gronthos S, Hume D, Geczy CL. S100A8/S100A9 and their association with cartilage and bone. J Mol Histol. 2007; 38(5):381-91.
- [32]Barksby HE, Hui W, Wappler I, Peters HH, Milner JM, Richards CD et al.. Interleukin-1 in combination with oncostatin M up-regulates multiple genesin chondrocytes:implications for cartilage destruction and repair. Arthritis Rheum. 2006; 54:540-550.
- [33]Chen F, Kerner MB, Dorfman HD, Hamerman D. The distribution of S-100 protein in articular cartilage from osteoarthritic joints. J Rheumatol. 1990; 17(12):1676-81.
- [34]Schelbergen RF, Blom AB, van den Bosch MH, Slöetjes A, Abdollahi-Roodsaz S, Schreurs BW et al.. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum. 2012; 64(5):1477-87.
- [35]Hammer HB, Odegard S, Fagerhol MK, Landewé R, van der Heijde D, Uhlig T et al.. Calprotectin (a major leucocyte protein) is strongly and independently correlated with joint inflammation and damage in rheumatoid arthritis. Ann Rheum Dis. 2007; 66(8):1093-1097.
- [36]Brun JG, Jonsson R, Haga HJ. Measurement of plasma calprotectin as an indicator of arthritis and disease activity in patients with inflammatory rheumatic diseases. J Rheumatol. 1994; 21(4):733-738.
- [37]Hirata T, Fujioka M, Takahashi KA, Arai Y, Asano T, Ishida M et al.. ApoB C7623T polymorphism predicts risk for steroid-induced osteonecrosis of the femoral head after renal transplantation. J Orthop Sci. 2007; 12(3):199-206.
- [38]Wang XY, Niu XH, Chen WH, Lin N, Song JN, Chen B et al.. [Effects of apolipoprotein A1 and B gene polymorphism on avascular necrosis of the femoral head in Chinese population]. Zhongguo Gu Shang. 2008; 21(2):99-102.
- [39]Jones JP. Fat embolism and osteonecrosis. Orthop Clin North Am. 1985; 16(4):595-633.
- [40]Rappaport EB, Fife D. Slipped capital femoral epiphysis in growth hormone-deficient patients. Am J Dis Child. 1985; 139(4):396-9.
- [41]Kitoh H, Kitakoji T, Kawasumi M, Ishiguro N. A histological and ultrastructural study of the iliac crest apophysis in Legg-Calve-Perthes disease. J Pediatr Orthop. 2008; 28(4):435-9.
- [42]He W, Li K. Incidence of genetic polymorphisms involved in lipid metabolism among Chinese patients with osteonecrosis of the femoral head. Acta Orthop. 2009; 80(3):325-9.
PDF