期刊论文详细信息
BMC Evolutionary Biology
Is agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha: Aleyrodidae)?: Dating, diversification and biogeographic evidence revealed
Paul J De Barro4  Ian Small3  Gregory Evans1  Charles D Bell2  Laura M Boykin3 
[1] USDA/APHIS/NIS, 10300 Baltimore Ave, BARC-West, Bldg. 005, Room 09A, Beltsville, MA 20705, USA;Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA;ARC Centre of Excellence in Plant Energy Biology, M315, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia;CSIRO Ecosystem Sciences, GPO Box 2583, Brisbane QLD 4001, Australia
关键词: Fossils;    Insect evolution;    BEAST;    Molecular clock dating;    Aleyrodidae;    Whitefly;   
Others  :  1085623
DOI  :  10.1186/1471-2148-13-228
 received in 2013-07-24, accepted in 2013-10-01,  发布年份 2013
PDF
【 摘 要 】

Background

Humans and insect herbivores are competing for the same food crops and have been for thousands of years. Despite considerable advances in crop pest management, losses due to insects remain considerable. The global homogenisation of agriculture has supported the range expansion of numerous insect pests and has been driven in part by human-assisted dispersal supported through rapid global trade and low-cost air passenger transport. One of these pests, is the whitefly, Bemisia tabaci, a cryptic species complex that contains some of the world’s most damaging pests of agriculture. The complex shows considerable genetic diversity and strong phylogeographic relationships. One consequence of the considerable impact that members of the B. tabaci complex have on agriculture, is the view that human activity, particularly in relation to agricultural practices, such as use of insecticides, has driven the diversification found within the species complex. This has been particularly so in the case of two members of the complex, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED), which have become globally distributed invasive species. An alternative hypothesis is that diversification is due to paleogeographic and paleoclimatological changes.

Results

The idea that human activity is driving speciation within the B. tabaci complex has never been tested, but the increased interest in fossil whiteflies and the growth in molecular data have enabled us to apply a relaxed molecular clock and so estimate divergence dates for the major lineages within the B. tabaci species complex. The divergence estimates do not support the view that human activity has been a major driver of diversification.

Conclusions

Our analysis suggests that the major lineages within the complex arose approximately 60–30 mya and the highly invasive MED and MEAM1 split from the rest of the species complex around 12 mya well before the evolution of Homo sapiens and agriculture. Furthermore, the divergence dates coincide with a period of global diversification that occurred broadly across the plant and animal kingdoms and was most likely associated with major climatic and tectonic events.

【 授权许可】

   
2013 Boykin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113174956934.pdf 2398KB PDF download
Figure 4. 60KB Image download
Figure 3. 64KB Image download
Figure 2. 81KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Thrall PH, Oakeshott JG, Fitt G, Southerton S, Burdon JJ, Sheppard A, Russell RJ, Zaluki M, Heino M, Denison RF: Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Evol Appl 2011, 2:200-215.
  • [2]Mazzi D, Dom S: Movement of insect pests in agricultural landscapes. An Appl Biol 2012, 160:97-113.
  • [3]Palumbi SR: Humans as the world's greatest evolutionary force. Science 2001, 293(5536):1786-1790.
  • [4]Whalon ME, Monte-Sanchez D, Hollingsworth RM: Global Pesticide Resistance in Arthropods. London: CAB International; 2008.
  • [5]Rosell RC, Bedford ID, Frohlich DR, Gill RJ, Brown JK: Analysis of morphological variation in distinct populations of Bemisia tabaci (Homoptera: Aleyrodidae). Ann Entomol Soc Am 1997, 90:575-589.
  • [6]Mound LA: Host-correlated variation in Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Proc Royal Ent Soc London Ser A 1963, 38:171-180.
  • [7]Boykin LM, Armstrong KF, Kubatko L, De Barro P: Species delimitation and global biosecurity. Evol Bioinf 2012, 8:1-37.
  • [8]Boykin LM, Shatters RG Jr, Rosell RC, McKenzie CL, Bagnall RA, De Barro P, Frohlich DR: Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Mol Phylogenet Evol 2007, 44(3):1306-1319.
  • [9]De Barro P, Ahmed M: Genetic Networking of the Bemisia tabaci Cryptic Species Complex Reveals Pattern of Biological Invasions. PLoS One 2011, 6(10):e25579.
  • [10]Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro P: Refined global analysis of Bemisia tabaci (Gennadius)(Hemiptera: Sternorrhyncha: Aleyroidea) mitochondrial CO1 to identify species level genetic boundries. Ann Entomol Soc Am 2010, 103(2):196-208.
  • [11]De Barro PJ, Liu SS, Boykin LM, Dinsdale AB: Bemisia tabaci: A Statement of Species Status. Ann Rev Entomol 2011, 56:1-19.
  • [12]Hu J, De Barro P, Zhao H, Wang J, Nardi F, Liu SS: An extensive field survey combined with a phylogenetic analysis reveals rapid and widespread invasion of two alien whiteflies in China. PLoS One 2011, 6(1):e16061.
  • [13]Cheek S, Macdonald O: Extended summaries SCI pesticides group symposium management of Bemisia tabaci. Pestic Sci 1994, 42:135-142.
  • [14]Dalton R: Whitefly infestations: the Christmas Invasion. Nature 2006, 443(7114):898-900.
  • [15]Liu S, Colvin J, De Barro P: Species concepts as applied to the whitefly Bemisia tabaci systematics: how many species are there? J Integr Agric 2012, 11:176-186.
  • [16]Xu J, De Barro PJ, Liu SS: Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. B Entomol Res 2010, 100(3):359-366.
  • [17]Zuckerkandl E, Pauling L: Molecules as documents of evolutionary history. J Theor Biol 1965, 8(2):357-366.
  • [18]Papadopoulou A, Anastasiou I, Vogler AP: Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Mol Biol Evol 2010, 27(7):1659-1672.
  • [19]Thomas JA, Trueman JW, Rambaut A, Welch JJ: Relaxed phylogenetics and the palaeoptera problem: resolving deep ancestral splits in the insect phylogeny. Syst Biol 2013, 62(2):285-297.
  • [20]Ho SY, Lo N: The insect molecular clock. Aust J Entomol 2013, 52:101-105.
  • [21]Gaunt MW, Miles MA: An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol Biol Evol 2002, 19(5):748-761.
  • [22]Bromham L, Penny D: The modern molecular clock. Nat Rev Gen 2003, 4(3):216-224.
  • [23]Kumar S: Molecular clocks: four decades of evolution. Nat Rev Gen 2005, 6(8):654-662.
  • [24]Heled J, Drummond AJ: Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Syst Biol 2012, 61(1):138-149.
  • [25]Drummond AJ, Ho SY, Phillips MJ, Rambaut A: Relaxed phylogenetics and dating with confidence. PLoS Biol 2006, 4(5):e88.
  • [26]Ho SY, Phillips MJ: Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol 2009, 58(3):367-380.
  • [27]Drohojowska J, Szwedo J: A new whitefly from Lower Cretaceous Lebanese amber (Hemiptera: Sternorrhyncha: Aleyrodidae). Insect Syst Evol 2011, 42:179-196.
  • [28]Drohojowska J, Szwedo J: New Aleyrodidae (Hemiptera: Sternorrhyncha: Aleyrodomorpha) from Eocine Baltic amber. Pol J Entomol 2012, 80:659-677.
  • [29]Drohojowska J, Szwedo J: The first Aleyrodidae from the Lowermost Eocene Oise amber (Hemiptera: Sternorrhyncha). Zootaxa 2013, 3636(2):319-347.
  • [30]Cockerell TDA: Insects in Burmese amber. The Entomol 1919, 52:241-243.
  • [31]Campbell BC, Steffen-Campbell JD, Gill RJ: Evolutionary origin of whiteflies (Hemiptera: Sternorrhyncha: Aleyrodidae) inferred from 18S rDNA sequences. Insect Mol Biol 1994, 3(2):73-88.
  • [32]Campbell BC, Steffen-Campbell JD, Gill RJ: Origin and radiation of whiteflies: an initial molecular phylogenetic assessment. In Bemisia 1995: Taxonomy, Biology, Damage Control and Management. Edited by Gerling D, Mayer RT. Andover, Hants: Intercept Ltd; 1995:29-51.
  • [33]Parham JF, Donoghue PC, Bell CJ, Calway TD, Head JJ, Holroyd PA, Inoue JG, Irmis RB, Joyce WG, Ksepka DT, et al.: Best practices for justifying fossil calibrations. Syst Biol 2012, 61(2):346-359.
  • [34]Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones Havas S, Sturrock S, et al.: Geneious v5.1, Available from. 2010. http://www.geneious.com webcite
  • [35]Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinfor 2004, 5:113. BioMed Central Full Text
  • [36]Ababneh F, Jermiin LS, Ma C, Robinson J: Matched-pairs tests of homogeneity with applications to homologous nucleotide sequences. Bioinfor 2006, 22(10):1225-1231.
  • [37]Jermiin LS, Jayaswal V, Ababneh F, Robinson J: Phylogenetic Model Evaluation. In Bioinformatics, Volume I: Data, Sequence Analysis, and Evolution. Volume 452. Edited by Keith JM. Humana Press: Totowa, New Jersey; 2008::331-363.
  • [38]Zhang Y: Relations between Shannon entropy and genome order index in segmenting DNA sequences. Phys Rev E Stat Nonlin Soft Matter Phys 2009, 79(4 Pt 1):041918.
  • [39]Liu MK, Hawkins N, Ritchie AJ, Ganusov VV, Whale V, Brackenridge S, Li H, Pavlicek JW, Cai F, Rose-Abrahams M, et al.: Vertical T cell immunodominance and epitope entropy determine HIV-1 escape. J Clin Invest 2013, 123(1):380-393.
  • [40]Posada D, Crandall KA: MODELTEST: Testing the model of DNA substitution. Bioinfor 1998, 14(9):817-818.
  • [41]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinfor 2003, 19(12):1572-1574.
  • [42]Jones ND, Gahegan M, Black M, Hine J, Mencl V, Charters S, Halytskyy Y, Kharuk AF, Hicks A, Binsteiner M, Soudlenkov G, Kloss G, Buckley K: BeSTGRID Distributed Computational Services. Auckland, New Zealand: The University of Auckland; 2011. Available from http://www.bestgrid.org/ webcite
  • [43]Rambaut A, Drummond AJ: Tracer v1.5.4 [Online]. 2010. Available fromhttp://beastbioedacuk/Tracer webcite
  • [44]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC evol biol 2007, 7:214. BioMed Central Full Text
  • [45]Drummond AJ, Rambaut A, Suchard M: LogCombiner v1.5.4 [Online. 2010. Available fromhttp://beastbioedacuk/LogCombiner webcite
  • [46]Drummond AJ, Rambaut A, Suchard M: TreeAnnotator v1.5.4 [Online. 2010. Available fromhttp://beastbioedacuk/TreeAnnotator webcite
  • [47]FigTree v 1.3.1. http://tree.bio.ed.ac.uk/software/figtree webcite
  • [48]Lee W, Park J, Lee GS, Lee S, Akimoto S: Taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. PLoS One 2013, 8(5):e63817.
  • [49]Wertheim JO, Sanderson MJ, Worobey M, Bjork A: Relaxed molecular clocks, the bias-variance trade-off, and the quality of phylogenetic inference. Syst Biol 2010, 59(1):1-8.
  • [50]Baele G, Li WL, Drummond AJ, Suchard MA, Lemey P: Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol Biol Evol 2013, 30(2):239-243.
  • [51]Bell CD, Soltis DE, Soltis PS: The age and diversification of the angiosperms re-revisited. Am J Bot 2010, 97(8):1296-1303.
  • [52]Cahenzli F, Erhardt A: Transgenerational acclimatization in an herbivore-host plant relationship. Proc R Soc London Ser B 2013, 280(1756):20122856.
  • [53]Stokes K, Stiling P, Gilg MR, Rossi AM: The gall midge Asphondylia borrichiae (Diptera: Cecidomyiidae): an indigenous example of host-associated genetic divergence in sympatry. Env Entomol 2012, 41(5):1246-1254.
  • [54]Diegisser T, Johannesen J, Lehr C, Seitz A: Genetic and morphological differentiation in Tephritis bardanae (Diptera: Tephritidae): evidence for host-race formation. J Evol Biol 2004, 17(1):83-93.
  • [55]Feder JL, Berlocher SH, Roethele JB, Dambroski H, Smith JJ, Perry WL, Gavrilovic V, Filchak KE, Rull J, Aluja M: Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. Proc Natl Acad Sci U S A 2003, 100(18):10314-10319.
  • [56]Feder JL, Xie X, Rull J, Velez S, Forbes A, Leung B, Dambroski H, Filchak KE, Aluja M: Mayr, Dobzhansky, and Bush and the complexities of sympatric speciation in Rhagoletis. Proc Natl Acad Sci U S A 2005, 102(Suppl 1):6573-6580.
  • [57]Feder JL, Roethele JB, Filchak K, Niedbalski J, Romero-Severson J: Evidence for inversion polymorphism related to sympatric host race formation in the apple maggot fly. Rhagoletis pomonella Genet 2003, 163(3):939-953.
  • [58]Berlocher SH, Feder JL: Sympatric speciation in phytophagous insects: moving beyond controversy? Annu Rev Entomol 2002, 47:773-815.
  • [59]Brown JK, Frohlich DR, Rosell RC: The Sweetpotato/Silverleaf Whiteflies: Biotypes of Bemisia tabaci Genn., or a Species Complex? Ann Rev Entomol 1995, 40:511-534.
  • [60]Hilley GE, Porder S: A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales. Proc Natl Acad Sci U S A 2008, 105(44):16855-16859.
  • [61]Mound LA: Zoogeographical distribution of whiteflies. Curr Top Vector Res 1984, 23:185-197.
  • [62]Schlee D: Insektenfossilen aus der unteren Kreide--1. Verwandtschaftforschung an fossilen and rezenten Aleyrodina (Insecta, Hemiptera). Stuttgarter Beitrage zur Naturkunde 1970, 213:1-72. in German
  • [63]Gingerich PD: Environment and evolution through the Paleocene-Eocene thermal maximum. Trends Ecol Evol 2006, 21(5):246-253.
  • [64]Zachos JC, Rohl U, Schellenberg SA, Sluijs A, Hodell DA, Kelly DC, Thomas E, Nicolo M, Raffi I, Lourens LJ, et al.: Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 2005, 308(5728):1611-1615.
  • [65]Currano ED, Wilf P, Wing SL, Labandeira CC, Lovelock EC, Royer DL: Sharply increased insect herbivory during the Paleocene-Eocene Thermal Maximum. Proc Natl Acad Sci U S A 2008, 105(6):1960-1964.
  • [66]Pletsch T, Erbacher J, Holbourn AEL, Kuhnt W, Moullade M, Oboh-Ikuenobede FE, Soding E, Wagner T: Cretaceous separation of Africa and South America: the view from the West African margin (ODP Leg 159). J S Am Earth Sci 2001, 14:147-174.
  • [67]Evans GA: The whiteflies (Hemiptera: Aleyrodidae) of the world and their host plants and natural enemies. USDA/Animal Plant Health Inspection Service (APHIS). Last Revised. 2008, 703. Available online at:http://www.sel.barc.usda.gov:591/1WF/World-Whitefly-Catalog.pdf webcite
  • [68]Wilf P, Labandeira CC, Johnson KR, Coley PD, Cutter AD: Insect herbivory, plant defense, and early Cenozoic climate change. Proc Natl Acad Sci U S A 2001, 98(11):6221-6226.
  • [69]Legg JP, Jeremiah SC, Obiero HM, Maruthi MN, Ndyetabula I, Okao-Okuja G, Bouwmeester H, Bigirimana S, Tata-Hangy W, Gashaka G, et al.: Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. Virus Res 2011, 159(2):161-170.
  • [70]Sseruwagi P, Maruthi MN, Colvin J, Rey MEC, Brown JK, Legg JP: Colonization of non-cassava plant species by whiteflies (Bemisia tabaci) in Uganda. Entomol Exp App 2006, 119:145-153.
  • [71]Legg JP, French R, Rogan D, Okao-Okuja G, Brown JK: A distinct Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae) genotype cluster is associated with the epidemic of severe cassava mosaic virus disease in Uganda. Mol Ecol 2002, 11(7):1219-1229.
  • [72]Sseruwagi P, Sserubombwe WS, Legg JP, Ndunguru J, Thresh JM: Methods of surveying the incidence and severity of cassava mosaic disease and whitefly vector populations on cassava in Africa: A review. Virus Res 2004, 100(1):129-142.
  • [73]Jones WO: Manioc in Africa. Stanford, CA: Stanford University Press; 1959:315.
  • [74]Ross HB: The diffusion of the manioc plant from South America to Africa: An essay in ethnobotanical culture history. New York, USA: Columbia University; 1975.
  • [75]Xie W, Meng QS, Wu QJ, Wang SL, Yang X, Yang NN, Li RM, Jiao XG, Pan HP, Liu BM, et al.: Pyrosequencing the Bemisia tabaci transcriptome reveals a highly diverse bacterial community and a robust system for insecticide resistance. PLoS One 2012, 7(4):e35181.
  • [76]Wang Z, Yan H, Yang Y, Wu Y: Biotype and insecticide resistance status of the whitefly Bemisia tabaci from China. Pest Manage Sci 2010, 66(12):1360-1366.
  • [77]Nauen R, Bielza P, Denholm I, Gorman K: Age-specific expression of resistance to a neonicotinoid insecticide in the whitefly Bemisia tabaci. Pest Manage Sci 2008, 64(11):1106-1110.
  • [78]Demon I, Haccou P, van den Bosch F: Introgression of resistance genes between populations: a model study of insecticide resistance in Bemisia tabaci. Theor Pop Biol 2007, 72(2):292-304.
  文献评价指标  
  下载次数:0次 浏览次数:2次