期刊论文详细信息
BMC Microbiology
Characterisation of the bacterial microbiota of the vagina of dairy cows and isolation of pediocin-producing Pediococcus acidilactici
Michael G Gänzle2  Divakar J Ambrose1  Burim N Ametaj2  Yvonne Wang2 
[1] Alberta Agriculture and Rural Development, Agriculture Research Division, Edmonton, AB, T6H 5T6, Canada;Department of Agricultural, University of Alberta, Food and Nutritional Science, 4-10 Ag/For Centre, Edmonton, AB, T6G 2P5, Canada
关键词: Shiga-like toxin;    Pediocin PA-1/AcH;    Metritis;    Dairy cow;    Lactic acid bacteria;   
Others  :  1144545
DOI  :  10.1186/1471-2180-13-19
 received in 2012-03-02, accepted in 2013-01-21,  发布年份 2013
PDF
【 摘 要 】

Background

Uterine infections in dairy cows lower profitability of dairy operations. Infections of the reproductive tract are related to the overgrowth of pathogenic bacteria during the first three weeks after parturition. However, alterations in the vaginal microbiota composition in the first weeks after parturition remain poorly documented.

Results

In this study, bacteria isolated from the vagina of healthy pregnant, and infected postpartum cows were characterised by random amplification of polymorphic DNA (RAPD) analysis and partial 16S ribosomal RNA (rDNA) gene sequencing. Populations of bacilli and lactic acid bacteria of the genera Enterococcus, Lactobacillus, and Pediococcus were present in both healthy and infected cows. Infected cows had a significant increase in the vaginal enteric bacteria population which consisted mainly of Escherichia coli. Three E. coli isolates harboured the gene coding for Shiga-like-toxin (SLT) I or II. Several isolates of the Pediococcus acidilactici were found to produce the bacteriocin pediocin AcH/PA-1. Quantitative PCR analyses of vaginal mucus samples collected from ten metritic cows before and after parturition confirmed the presence of the Lactobacillus group (Lactobacillus spp., Pediococcus spp., Leuconostoc spp., and Weissella spp.); Enterobacteriaceae, E. coli, and bacilli. The presence of the pediocin AcH/PA-1 structural gene and SLT genes were also confirmed with qPCR.

Conclusions

In conclusion, overgrowth of pathogenic bacteria, particularly E. coli, after parturition likely contributes to the development of metritis. Our microbiota analysis extends the information related to the composition of commensal bacteria in the bovine female reproductive tract and may facilitate the development of novel intervention strategies for prevention of uterine infections in dairy cows.

【 授权许可】

   
2013 Wang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330175435592.pdf 551KB PDF download
Figure 3. 34KB Image download
Figure 2. 29KB Image download
Figure 1. 27KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Sheldon IM, Lewis GS, LeBlanc S, Gilbert RO: Defining postpartum uterine disease in cattle. Theriogenology 2006, 65:1516-1530.
  • [2]Ross JDC: An update on pelvic inflammatory disease. Sex Transm Infect 2002, 78:18-19.
  • [3]Lewis GS: Symposium: Health problems of the postpartum cow. J Dairy Sci 1997, 80:984-994.
  • [4]Coleman DA, Thayne WV, Dailey RA: Factors affecting reproductive performance of dairy cows. J Dairy Sci 1985, 68:1793-1803.
  • [5]Sheldon I, Dobson H: Postpartum uterine health in cattle. Anim Reprod Sci 2004, 82–83:295-306.
  • [6]Sheldon IM, Noakes DE, Rycroft AN, Pfeiffer DU, Dobson H: Influence of uterine bacterial contamination after parturition on ovarian dominant follicle selection and follicle growth and function in cattle. Reproduction 2002, 123:837-845.
  • [7]Williams EJ, Fischer DP, Pfeiffer DU, England GCW, Noakes DE, Dobson H, Sheldon IM: Clinical evaluation of postpartum vaginal mucus reflects uterine bacterial infection and the immune response in cattle. Theriogenology 2005, 63:102-117.
  • [8]Williams EJ, Fischer DP, Noakes DE, England GCW, Rycroft A, Dobson H, Sheldon IM: The relationship between uterine pathogen growth density and ovarian function in the postpartum dairy cow. Theriogenology 2007, 68:549-559.
  • [9]Redondo-Lopez V, Cook RL, Sobel JD: Emerging role of lactobacilli in the control and maintenance of the vaginal bacterial microflora. Rev Infect Dis 1990, 12:856-872.
  • [10]Vintiñi E, Ocaña V, Elena Nader-Macías M: Effect of lactobacilli administration in the vaginal tract of mice: evaluation of side effects and local immune response by local administration of selected strains. Methods Mol Biol 2004, 268:401-410.
  • [11]Herthelius M, Gorbach SL, Möllby R, Nord CE, Pettersson L, Winberg J: Elimination of vaginal colonization with Escherichia coli by administration of indigenous flora. Infect Immun 1989, 57:2447-2451.
  • [12]Charteris WP, Kelly PM, Morell L, Collins KJ: Antibacterial activity associated with Lactobacillus gasseri ATCC 9857from the human female genitourinary tract. World J Microbiol Biotechnol 2004, 17:615-625.
  • [13]Eschenbach DA, Davick PR, Williams BL, Klebanoff SJ, Young-Smith K, Critchlow CM, Holmes KK: Prevalence of hydrogen peroxide-producing Lactobacillus species in normal women and women with bacterial vaginosis. J Clin Microbiol 1989, 27:251-256.
  • [14]Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CGM: Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci 2007, 104:7617-7621.
  • [15]Otero C, Silva De Ruiz C, Ibañez R, Wilde OR, De Ruiz Holgado AAP, Nader-Macias ME: Lactobacilli and enterococci isolated from the bovine vagina during the estrous cycle. Anaerobe 1999, 5:305-307.
  • [16]Otero C, Saavedra L, Silva De Ruiz C, Wilde O, Holgado AR, Nader-Macías ME: Vaginal bacterial microflora modifications during the growth of healthy cows. Lett. Appl. Microbiol. 2000, 31:251-254.
  • [17]Ambrose JD, Pattabiraman SR, Venkatesan RA: Types and incidence of aerobic bacteria in different puerperal conditions in bovines. Cheiron 1986, 15:176-179.
  • [18]Christensen H, Nordentoft S, Olsen JE: Phylogenetic relationships of Salmonella based on rRNA sequences. Int. J. Syst. Bacteriol. 1998, 48(Pt 2):605-610.
  • [19]Wani SA, Bhat MA, Samanta I, Nishikawa Y, Buchh AS: Isolation and characterization of Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) from calves and lambs with diarrhoea in India. Letters in Applied microbiology 2003, 37:121-6.
  • [20]Williams EJ, Sibley K, Miller AN, Lane EA, Fishwick J, Nash DM, Herath S, England GCW, Dobson H, Sheldon IM: The effect of Escherichia coli lipopolysaccharide and tumour necrosis factor alpha on ovarian function. Am J Reprod Immunol 2008, 60:462-473.
  • [21]Eijsink VGH, Axelsson L, Diep DB, Håvarstein LS, Holo H, Nes IF: Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek 2002, 81:639-654.
  • [22]Hudson JA, Cai Y, Corner RJ, Morvan B, Joblin KN: Identification and enumeration of oleic acid and linoleic acid hydrating bacteria in the rumen of sheep and cows. J Appl Microbiol 2000, 88:286-292.
  • [23]Juven BJ, Meinersmann RJ, Stern NJ: Antagonistic effects of lactobacilli and pediococci to control intestinal colonization by human enteropathogens in live poultry. J Appl Bacteriol 1991, 70:95-103.
  • [24]Kurzak P, Ehrmann MA, Vogel RF: Diversity of lactic acid bacteria associated with ducks. Syst Appl Microbiol 1998, 21:588-592.
  • [25]Mathys S, von Ah U, Lacroix C, Staub E, Mini R, Cereghetti T, Meile L: Detection of the pediocin gene pedA in strains from human faeces by real-time PCR and characterization of Pediococcus acidilactici UVA1. BMC Biotechnol 2007, 7:55. BioMed Central Full Text
  • [26]Bennik M, Smid EJ, Gorris L: Vegetable-associated Pediococcus parvulus produces pediocin PA-1. Appl Environ Microbiol 1997, 63:2074-2076.
  • [27]Ennahar S, Aoude-Werner D, Sorokine O, Van Dorsselaer A, Bringel F, Hubert JC, Hasselmann C: Production of pediocin AcH by Lactobacillus plantarum WHE 92 isolated from cheese. Appl Environ Microbiol 1996, 62:4381-4387.
  • [28]Gonzalez CF, Kunka BS: Plasmid-associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Appl Environ Microbiol 1987, 53:2534-2538.
  • [29]Ray SK, Johnson MC, Ray B: Bacteriocin plasmids of Pediococcus acidilactici. J Ind Microbiol Biotechnol 1989, 4:163-171.
  • [30]Marugg JD, Gonzalez CF, Kunka BS, Ledeboer AM, Pucci MJ, Toonen MY, Walker SA, Zoetmulder LC, Vandenbergh PA: Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Appl. Environ. Microbiol. 1992, 58:2360-2367.
  • [31]Hammes WP, Hertel C: New developments in meat starter cultures. Meat Sci. 1998, 49S1:S125-138.
  • [32]Dobson A, Cotter PD, Ross RP, Hill C: Bacteriocin production: a probiotic trait? Appl Environ Microbiol 2012, 78:1-6.
  • [33]Juarez Tomás MS, Bru E, Wiese B, de Ruiz Holgado AAP, Nader-Macías ME: Influence of pH, temperature and culture media on the growth and bacteriocin production by vaginal Lactobacillus salivarius CRL 1328. J Appl Microbiol 2002, 93:714-724.
  • [34]Sobel: Is there a protective role for vaginal flora? Curr Infect Dis Rep 1999, 1:379-383.
  • [35]Alpay-Karaoğlu S, Aydin F, Kiliç S, Kiliç A: Antimicrobial activity and characteristics of bacteriocins produced by vaginal lactobacilli. Turk J Med Sci 2002, 33:7-12.
  • [36]Sobel JD, Chaim W: Vaginal microbiology of women with acute recurrent vulvovaginal candidiasis. J Clin Microbiol 1996, 34:2497-2499.
  • [37]Stolz P, Böcker G, Hammes WP: Utilisation of maltose and glucose by lactobacilli isolated from sourdough. FEMS Microbiol Lett 1993, 109:237-242.
  • [38]Sambrook J, Fritsch E, Maniatis T: Molecular cloning: a laboratory manual. 2nd edition. Cold Spring: Cold Spring Harbor Laboratory Press; 1989.
  • [39]Heilig HGHJ, Zoetendal EG, Vaughan EE, Marteau P, Akkermans ADL, de Vos WM: Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 2002, 68:114-123.
  • [40]Walter J, Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Loach DM, Munro K, Alatossava T: Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microbiol 2000, 66:297-303.
  • [41]Rinttilä T, Kassinen A, Malinen E, Krogius L, Palva A: Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 2004, 97:1166-1177.
  • [42]Bartosch S, Fite A, Macfarlane GT, McMurdo MET: Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 2004, 70:3575-3581.
  • [43]Martineau F, Picard FJ, Ke D, Paradis S, Roy PH, Ouellette M, Bergeron MG: Development of a PCR assay for identification of staphylococci at genus and species levels. J Clin Microbiol 2001, 39:2541-2547.
  • [44]Garbeva P, van Veen JA, van Elsas JD: Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb Ecol 2003, 45:302-316.
  • [45]Sabat G, Rose R, Hickey WJ, Harkin JM: Selective sensitive method for PCR amplification of Escherichia coli 16S rRNA genes in soil. Appl Environ Microbiol 2000, 66:844-849.
  • [46]Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Roser A, Koops HP, Wagner M: Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 1998, 64:3042-3051.
  • [47]Vogel L, van Oorschot E, Maas HME, Minderhoud B, Dijkshoorn L: Epidemiologic typing of Escherichia coli using RAPD analysis, ribotyping and serotyping. Clin Microbiol Infect 2000, 6:82-87.
  • [48]Hamad SH, Dieng MC, Ehrmann MA, Vogel RF: Characterization of the bacterial flora of Sudanese sorghum flour and sorghum sourdough. J Appl Microbiol 1997, 83:764-770.
  • [49]Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP: Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 2001, 67:2578-2585.
  • [50]Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 1985, 33:103-119.
  • [51]Lyons SR, Griffen AL, Leys EJ: Quantitative real-time PCR for Porphyromonas gingivalis and total bacteria. J Clin Microbiol 2000, 38:2362-2365.
  • [52]Fry NK, Fredrickson JK, Fishbain S, Wagner M, Stahl DA: Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers. Appl Environ Microbiol 1997, 63:1498-1504.
  • [53]Greisen K, Loeffelholz M, Purohit A, Leong D: PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol 1994, 32:335-351.
  • [54]Tichaczek PS, Nissen-Meyer J, Nes IF, Vogel RF, Hammes WP: Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sakeLTH673. System Appl Microbiol 1992, 15:460-468.
  文献评价指标  
  下载次数:58次 浏览次数:50次