期刊论文详细信息
BMC Systems Biology
Dynamic optimization of distributed biological systems using robust and efficient numerical techniques
Antonio A Alonso1  Julio R Banga1  Maria-Sonia G García1  Eva Balsa-Canto1  Carlos Vilas1 
[1] BioProcess Engineering Group, IIM-CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain
关键词: Pattern formation and control;    Hybrid optimization methods;    Global optimization methods;    Reduced order models;    Distributed biological systems;    Dynamic optimization;   
Others  :  1143862
DOI  :  10.1186/1752-0509-6-79
 received in 2011-12-01, accepted in 2012-06-22,  发布年份 2012
PDF
【 摘 要 】

Background

Systems biology allows the analysis of biological systems behavior under different conditions through in silico experimentation. The possibility of perturbing biological systems in different manners calls for the design of perturbations to achieve particular goals. Examples would include, the design of a chemical stimulation to maximize the amplitude of a given cellular signal or to achieve a desired pattern in pattern formation systems, etc. Such design problems can be mathematically formulated as dynamic optimization problems which are particularly challenging when the system is described by partial differential equations.

This work addresses the numerical solution of such dynamic optimization problems for spatially distributed biological systems. The usual nonlinear and large scale nature of the mathematical models related to this class of systems and the presence of constraints on the optimization problems, impose a number of difficulties, such as the presence of suboptimal solutions, which call for robust and efficient numerical techniques.

Results

Here, the use of a control vector parameterization approach combined with efficient and robust hybrid global optimization methods and a reduced order model methodology is proposed. The capabilities of this strategy are illustrated considering the solution of a two challenging problems: bacterial chemotaxis and the FitzHugh-Nagumo model.

Conclusions

In the process of chemotaxis the objective was to efficiently compute the time-varying optimal concentration of chemotractant in one of the spatial boundaries in order to achieve predefined cell distribution profiles. Results are in agreement with those previously published in the literature. The FitzHugh-Nagumo problem is also efficiently solved and it illustrates very well how dynamic optimization may be used to force a system to evolve from an undesired to a desired pattern with a reduced number of actuators. The presented methodology can be used for the efficient dynamic optimization of generic distributed biological systems.

【 授权许可】

   
2012 Vilas et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330022936677.pdf 1154KB PDF download
Figure 9. 30KB Image download
Figure 8. 34KB Image download
Figure 7. 17KB Image download
Figure 6. 32KB Image download
Figure 5. 20KB Image download
Figure 4. 41KB Image download
Figure 3. 24KB Image download
Figure 2. 24KB Image download
Figure 1. 25KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Kitano H: Systems biology: A brief overview. Science 2002, 295(5560):1662-1664.
  • [2]Butcher EC, Berg EL, Kunkell EJ: Systems biology in drug discovery. Nat Biotechnol 2004, 22(10):1253-1259.
  • [3]Kauffman K, Prakash P, Edwards J: Advances in flux balance analysis. Curr Opin Biotechnol 2003, 14(5):491-496.
  • [4]Klipp E, Heinrich R, Holzhütte HG: Prediction of temporal gene expression. Metabolic opimization by re-distribution of enzyme activities. Eur J Biochem 2002, 269:5406-5413.
  • [5]Zaslaver A, Mayo A, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, Surette M, Alon U: Just-in-time transcription program in metabolic pathways. Nat Genet 2004, 36:486-491.
  • [6]Oyarzun DA, Ingalls BP, Middleton RH, Kalamatianos D: Sequential activation of metabolic pathways: a dynamic optimization approach. Bull Math Biol 2009, 71:1851-1872.
  • [7]Banga JR, Balsa-Canto E: Parameter estimation and optimal experimental design. Essays in Biochemistry 2008, 45:195-210.
  • [8]Banga JR: Optimization in computational systems biology. BMC Systems Biology 2008, 2:47-53. BioMed Central Full Text
  • [9]Hirmajer T, Balsa-Canto E, Banga JR: DOTcvpSB, A software toolbox for dynamic optimization in systems biology. BMC Bioinformatics 2009, 10:199-213. BioMed Central Full Text
  • [10]Banga JR, Balsa-Canto E, Moles CG, Alonso AA: Dynamic optimization of bioprocesses: Efficient and robust numerical strategies. J Biotechnol 2005, 117(4):407-419.
  • [11]Stengel RF, Ghigliazza RM, Kulkarni NV: Optimal enhancement of immune response. Bioinformatics 2002, 19(9):1227-1235.
  • [12]Shudo E, Iwasa Y: Dynamic optimization of host defense, immune memory, and post-infection pathogen levels in mammals. Journal of Theoretical Biology 2004, 228:17-29.
  • [13]Joly M, Pinto JM: Role of mathematical modeling on the optimal control of HIV-1 pathogenesis. AIChE Journal 2006, 52(3):856-884.
  • [14]Ledzewicz U, H S: Drug resistance in cancer chemotherapy as an optimal control problem. Discrete and Continuous Dynamical Systems. Series B 2006, 6:129-150.
  • [15]Castiglione F, Piccoli B: Cancer immunotherapy, mathematical modelling and optimal control. Journal of Theoretical Biology 2007, 247(4):723-732.
  • [16]Engelhart M, Lebiedz D, Sager S: Optimal control for selected cancer chemotherapy ODE models: A view on the potential of optimal schedules and choice of objective function. Math Biosci 2011, 229:123-134.
  • [17]Volpert V, Petrovskii S: Reaction-diffusion waves in biology. Physics Life Revs 2009, 6:267-310.
  • [18]Kholodenko B: Spatially distributed cell signalling. FEBS Let 2009, 583(24):4006-4012.
  • [19]Lebiedz D, Brandt-Pollmann U: Manipulation of Self-Aggregation Patterns and Waves in a Reaction-Diffusion System by Optimal Boundary Control Strategies. Phys Rev Lett 2003, 91(20):208-301.
  • [20]Lebiedz D, Maurer H: External Optimal Control of Self-Organisation Dynamics in a Chemotaxis Reaction Diffusion System. IEE Systems Biology 2004, 2:222-229.
  • [21]Jones DR, Schonlau M, Welch WJ: Efficient global optimization of expensive black-box functions. J Global Opt 1998, 13:455-492.
  • [22]Gutmann H: A radial basis function method for global optimization. J Global Opt 2001, 19(3):201-227.
  • [23]Egea JA, Vázquez E, Banga JR, Martí R: Improved scatter search for the global optimization of computationally expensive dynamic models. Jornal of Global Optimization 2009, 43(2-3):175-190.
  • [24]Balsa-Canto E, Alonso AA, Banga JR: Reduced-order models for nonlinear distributed process systems and their application in dynamic optimization. Ind & Eng Chem Res 2004, 43:3353-3363.
  • [25]Vilas C, García MR, Banga JR, Alonso AA: Stabilization of inhomogeneous patterns in a diffusion-reaction system under structural and parametric uncertainties. Journal of Theoretical Biology 2006, 241(2):295-306.
  • [26]Vilas C, Garcia M, Banga J, Alonso A: Robust Feed-Back Control of Travelling Waves in a Class of Reaction-Diffusion Distributed Biological Systems. Physica D 2008, 237(18):2353-2364.
  • [27]FitzHugh R: Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1961, 1(6):445-466.
  • [28]Nagumo J, Arimoto S, Yoshizawa Y: Active pulse transmission line simulating nerve axon. Proceedings of the Institute of Radio Engineers 1962, 50(10):2061-2070.
  • [29]Lapidus L, Pinder G: Numerical Solution of Partial Differential Equations in Science and Engineering. New York: John Wiley & Sons, Inc; 1999.
  • [30]Schiesser WE: The Numerical Method of Lines. New York: Academic Press; 1991.
  • [31]Reddy JN: An Introduction to the Finite Element Method. New York: McGraw-Hill; 1993.
  • [32]Balsa-Canto E, Banga JR, Alonso AA, Vassiliadis V: Dynamic optimization of distributed parameter systems using second-order directional derivatives. Industrial & Engineering Chemistry Research 2004, 43(21):6756-6765.
  • [33]Gottlieb D, Orszag SA: Numerical Analysis of Spectral Methods: Theory and Applications. Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics; 1977.
  • [34]Sirovich L: Turbulence and the Dynamics of Coherent Structures. Part I: Coherent Structures. Quaterly of Applied Mathematics 1987, 45(3):561-571.
  • [35]Alonso AA, Frouzakis CE, Kevrekidis IG: Optimal Sensor Placement for State Reconstruction of Distributed Process Systems. AIChE Journal 2004, 50(7):1438-1452.
  • [36]Ravindran SS: A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. International journal for numerical methods in fluids 2000, 34(5):425-448.
  • [37]Christofides PD: Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes. Boston: Birkhäuser; 2001.
  • [38]Biegler L, Cervantes A, Wätcher A: Advances in Simulaneous Strategies for Dynamic Process Optimization. Chem Eng Sci 2002, 57(4):575-593.
  • [39]Bock HG, Plitt KJ: A multiple shooting algorithm for direct solution of optimal control problems. Chem Eng Sci 1984, 242-247.
  • [40]Vassiliadis VS, Pantelides CC, Sargent RWH: Solution of a Class of Multistage Dynamic Optimization Problems. 1. Problems Without Path Constraints. Ind Eng Chem Res 1994, 33(9):2111-2122.
  • [41]Banga JR, Seider WD: Global optimization of chemical processes using stochastic algorithms. In State of the Art in Global Optimization - Computational Methods and Applications, Volume 7 of Nonconvex optimization and its applications. Edited by Floudas CA, Pardalos PM. Kluwer Academic Publ., Dordrecht, Netherlands; 1996:563-583.
  • [42]Esposito WR, Floudas CA: Deterministic Global Optimization in Nonlinear Optimal Control Problems. Journal of Global Optimization 2000, 17(1-4):97-126.
  • [43]Floudas C: Deterministic Global Optimization: Theory, Methods and Applications. Kluwer Academics, The Netherlands; 2000.
  • [44]Papamichail I, Adjiman CS: A rigorous global optimization algorithm for problems with ordinary differential equations. Journal of Global Optimization 2002, 24:1-33.
  • [45]Singer AB, Barton PI: Global optimization with nonlinear ordinary differential equations. Journal of Global Optimization 2006, 34(2):159-190.
  • [46]Talbi EG: Metaheuristics: From Design to Implementation. Wiley Publishing, New Jersey; 2009.
  • [47]Balsa-Canto E, Vassiliadis V, Banga J: Dynamic Optimization of Single- and Multi-Stage Systems Using a Hybrid Stochastic-Deterministic Method. Ind Eng Chem Res 2005, 44(5):1514-1523.
  • [48]Egea J, Balsa-Canto E, Garcia M, Banga J: Dynamic optimization of nonlinear processes with an enhanced scatter search method. Ind & Eng Chem Res 2009, 48(9):4388-4401.
  • [49]Balsa-Canto E, Banga JR, Alonso AA, Vassiliadis VS: Dynamic optimization of chemical and biochemical processes using restricted second-order information. Comp & Chem Eng 2001, 25(4-6):539-546.
  • [50]Murray JD: Mathematical Biology I: An Introduction. Springer-Verlag, Berlin; 2002.
  • [51]Hodgkin AL, Huxley AF: A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology-London 1952, 117(4):500-544.
  • [52]Zimmermann M, Firle S, Natiello M, Hildebrand M, Eiswirth M, Bär M, Bangia A, Kevrekidis I: Pulse bifurcation and transition to spatiotemporal chaos in an excitable reaction–diffusion model. Physica D 1997, 110:92-104.
  • [53]Van Haastert PJM, Devreotes PN: Chemotaxis: Signalling the way forward. Nat Rev Mol Cell Biol 2004, 5(8):626-634.
  • [54]Budrene EO, Berg HC: Complex patterns formed by motile cells of Escherichia coli. Nature 1991, 349:630-633.
  • [55]Zhou JL, Tits AL, Lawrence CT: User’s Guide for FFSQP Version 3.7: A Fortran Code for Solving Optimization Programs, Possibly Minimax, with General Inequality Contraints and Linear Equality Constraints, Generating Feasible Iterates. Technical Report SRC-TR-92-107r5, Institute for systems research, University of Maryland 1997.
  • [56]Fenton FH, Cherry EM, Hastings HM, Evans SJ: Real-time Computer Simulations of Excitable Media: JAVA as a Scientific Language and as a Wrapper for C and FORTRAN programs. Biosystems 2002, 64(1-3):73-96.
  • [57]Pumir A, Krinsky V: Unpinnig of a Rotating Wave in Cardiac Muscle by an Electric Field. Journal of Theoretical Biology 1999, 199(3):311-319.
  • [58]Alonso AA, Fernández CV, Banga JR: Dissipative Systems: from physics to robust nonlinear control. Int J Robust Nonlinear Control 2004, 14(2):157-179.
  • [59]Keener JP: The Topology of Defibrillation. Journal of Theoretical Biology 2004, 230(4):459-473.
  • [60]García MR, Vilas C, Banga JR, Alonso AA: Exponential observers for distributed tubular (bio)reactors. AIChE Journal 2008, 54(11):2943-2956.
  文献评价指标  
  下载次数:103次 浏览次数:25次