期刊论文详细信息
BMC Pulmonary Medicine
Normal values of exhaled carbon monoxide in healthy subjects: comparison between two methods of assessment
Franco Cavaliere3  Giovanni Capelli1  Riccardo Gargaruti3  Andrea Poscia2  Umberto Moscato2 
[1] Institute of Hygiene, University of Cassino, Cassino, Italy;Institute of Public Health, Hygiene Division, Catholic University “Sacro Cuore”, Largo Francesco Vito, 1, 00168 Rome, Italy;Institute of Anaesthesia and Intensive Care, Catholic University “Sacro Cuore”, Rome, Italy
关键词: Electrochemical analyser;    Photo-acoustic spectrometer;    Exhaled carbon monoxide;    Carbon monoxide;   
Others  :  1090713
DOI  :  10.1186/1471-2466-14-204
 received in 2014-09-23, accepted in 2014-12-11,  发布年份 2014
PDF
【 摘 要 】

Background

In a previous study, exhaled carbon monoxide (eCO) has been assessed in healthy non-smokers with a photo acoustic spectrometer Brüel&Kjær 1312. Unexpectedly, values were higher than those reported in literature, which were mostly obtained with electrochemical analysers. This study was aimed to compare eCO values obtained with Brüel&Kjær 1312 and PiCO + Smokerlyzer, a largely utilized electrochemical analyser.

Methods

Thirty-four healthy subjects, 15 non-smokers and 19 smokers, underwent eCO assessment with Brüel&Kjær 1312 and PiCO + Smokerlyzer during a prolonged expiration (15 seconds). Brüel&Kjær 1312 assessed CO concentration 7 and 12 seconds after the beginning of expiration and displayed the mean value. PiCO + Smokerlyzer was utilized according to the manufacturer’s recommendations. In vitro, the two devices were tested with standard concentrations of CO in nitrogen (5, 9.9, 20, and 50 ppm), and the time needed by PiCO + Smokerlyzer readings to stabilize was assessed at different gas flows.

Results

Both Brüel&Kjær 1312 and PiCO + Smokerlyzer presented very good internal consistency. The values provided were strictly correlated, but at low test concentrations, the Brüel&Kjær 1312 readings were greater than the PiCO + Smokerlyzer, and vice versa. PiCO + Smokerlyzer overestimated the CO standard concentrations at 5 and 9.9 ppm by 20%, while Brüel&Kjær 1312 measures were correct. PiCO + Smokerlyzer readings stabilized in 12 seconds during in vitro tests and in 15 seconds during in vivo measurements, suggesting that the values displayed corresponded to the initial phase of expiration.

Conclusions

Differences between Brüel&Kjær 1312 and PiCO + Smokerlyzer may be explained because Brüel&Kjær 1312 measured CO levels in the middle and at the end of expiration while PiCO + Smokerlyzer assessed them in the initial part of expiration.

【 授权许可】

   
2014 Moscato et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150128162851124.pdf 546KB PDF download
Figure 4. 28KB Image download
Figure 3. 59KB Image download
Figure 2. 51KB Image download
Figure 1. 51KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Zhou M, Liu Y, Duan Y: Breath biomarkers in diagnosis of pulmonary diseases. Clin Chim Acta 2012, 413(21–22):1770-1780.
  • [2]Ryter SW, Alam J, Choi AM: Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 2006, 86(2):583-650.
  • [3]Owens EO: Endogenous carbon monoxide production in disease. Clin Biochem 2010, 43(15):1183-1188.
  • [4]Sylvester KP, Patey RA, Rafferty GF, Rees D, Thein SL, Greenough A: Exhaled carbon monoxide levels in children with sickle cell disease. Eur J Pediatr 2005, 164(3):162-165.
  • [5]Cunnington AJ, Hormbrey P: Breath analysis to detect recent exposure to carbon monoxide. Postgrad Med J 2002, 78:233-238.
  • [6]Zegdi R, Perrin D, Burdin M, Boiteau R, Tenaillon A: Increased endogenous carbon monoxide production in severe sepsis. Intensive Care Med 2002, 28(6):793-796.
  • [7]Morimatsu H, Takahashi T, Matsusaki T, Hayashi M, Matsumi J, Shimizu H, Matsumi M, Morita K: An increase in exhaled CO concentration in systemic inflammation/sepsis. J Breath Res 2010, 4(4):047103.
  • [8]Antuni JD, Kharitonov SA, Hughes D, Hodson ME, Barnes PJ: Increase in exhaled carbon monoxide during exacerbations of cystic fibrosis. Thorax 2000, 55(2):138-142.
  • [9]De las Heras D, Fernandez J, Gines P, Cardenas A, Ortega R, Navasa M, Barbera JA, Calahorra B, Guevara M, Bataller R, Jimenez W, Arroyo V, Rodes J: Increased carbon monoxide production in patients with cirrhosis with and without spontaneous bacterial peritonitis. Hepatology 2003, 38(2):452-459.
  • [10]Matsusaki T, Morimatsu H, Takahashi T, Matsumi M, Sato K, Kaku R, Sato T, Yagi T, Tanaka N, Morita K: Increased exhaled carbon monoxide concentration during living donor liver transplantation. Int J Mol Med 2008, 21(1):75-81.
  • [11]Ohara Y, Ohara T, Ohrui T, Morikawa T, Asamura T, Sasaki H, Arai H: Exhaled carbon monoxide levels in preschool-age children with episodic asthma. Pediatr Int 2012, 54(2):227-232.
  • [12]Pearson P, Lewis S, Britton J, Fogarty A: Exhaled carbon monoxide levels in atopic asthma: a longitudinal study. Respir Med 2005, 99(10):1292-1296.
  • [13]Zayasu K, Sekizawa K, Okinaga S, Yamaya M, Ohrui T, Sasaki H: Increased carbon monoxide in exhaled air of asthmatic patients. Am J Respir Crit Care Med 1997, 156(4 Pt 1):1140-1143.
  • [14]Yasuda H, Sasaki T, Yamaya M, Ebihara S, Maruyama M, Kanda A, Sasaki H: Increased arteriovenous carboxyhemoglobin differences in patients with inflammatory pulmonary diseases. Chest 2004, 125(6):2160-2168.
  • [15]Yamaya M, Sekizawa K, Ishizuka S, Monma M, Mizuta K, Sasaki H: Increased carbon monoxide in exhaled air of subjects with upper respiratory tract infections. Am J Respir Crit Care Med 1998, 158:311-314.
  • [16]Biernacki WA, Kharitonov SA, Barnes PJ: Exhaled carbon monoxide in patients with lower respiratory tract infection. Respir Med 2001, 95(12):1003-1005.
  • [17]Horvath I, Loukides S, Wodehouse T, Kharitonov SA, Cole PJ, Barnes PJ: Increased levels of exhaled carbon monoxide in bronchiectasis: a new marker of oxidative stress. Thorax 1998, 53(10):867-870.
  • [18]Monma M, Yamaya M, Sekizawa K, Ikeda K, Suzuki N, Kikuchi T, Takasasa T, Sasaki H: Increased carbon monoxide in exhaled air of patients with seasonal allergic rhinitis. Clin Exp Allergy 1999, 29:1537-1541.
  • [19]Vos R, Cordemans C, Vanaudenaerde BM, De Vleeschauwer SI, Schoonis A, Van Raemdonck DE, Dupont LJ, Verleden GM: Exhaled carbon monoxide as a noninvasive marker of airway neutrophilia after lung transplantation. Transplantation 2009, 87(10):1579-1583.
  • [20]Kharitonov SA, Barnes PJ: Biomarkers of some pulmonary diseases in exhaled breath. Biomarkers 2002, 7(1):1-32.
  • [21]Paredi P, Kharitonov SA, Barnes PJ: Analysis of expired air for oxidation products. Am J Respir Crit Care Med 2002, 166(12 Pt 2):S31-S37.
  • [22]Cavaliere F, Volpe C, Gargaruti R, Poscia A, Di Donato M, Grieco G, Moscato U: Effects of acute hypoventilation and hyperventilation on exhaled carbon monoxide measurement in healthy volunteers. BMC Pulmonary Medicine 2009, 9:51. BioMed Central Full Text
  • [23]Harren FJM, Cotti G, Oomens J, Lintel Hekkert S: Encyclopedia of Analytical Chemistry. In Photoacoustic spectroscopy in trace gas monitoring. Edited by Meyers RA. Chichester: John Wiley & Sons Ltd; 2000:2203-2226.
  • [24]Bland JM, Altman DG: Measuring agreement in method comparison studies. Stat Methods Med Res 1999, 8:135-160.
  • [25]Shorter H, Nelson D, McManus JB, Zahniser MS, Sama S, Milton DK: Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO(2), CO and N(2)O) by infrared laser spectroscopy. J Breath Res 2011, 5(3):037108.
  • [26]Sowa M, Mürtz , Hering P: Mid-infrared laser spectroscopy for online analysis of exhaled CO. J. Breath Res 2010, 4(4):047101.
  • [27]Chivers LL, Higgins ST, Heil SH, Proskin RW, Thomas CS: Effects of initial abstinence and pro¬grammed lapses on the relative reinforcing effects of cigarette smoking. J Appl Behav Anal 2008, 41(4):481-497.
  • [28]Dallery J, Glenn IM, Raiff BR: An Internet-based abstinence reinforcement treatment for cigarette smoking. Drug Alcohol Depend 2007, 86(2–3):230-238.
  • [29]Rose JE, Salley A, Behm FM, Bates JE, Westman EC: Reinforcing effects of nicotine and non-nicotine components of cigarette smoke. Psychopharmacology (Berl) 2010, 210(1):1-12.
  • [30]Terheggen-Lagro SW, Bink MW, Vreman HJ, van der Ent CK: End-tidal carbon monoxide corrected for lung volume is elevated in patients with cystic fibrosis. Am J Respir Crit Care Med 2003, 168(10):1227-1231.
  • [31]Raiff BR, Faix C, Turturici M, Dallery J: Breath carbon monoxide output is affected by speed of emptying the lungs: implications for laboratory and smoking cessation research. Nicotine Tob Res 2010, 12(8):834-838.
  • [32]Schober P, Kalmanowicz M, Loer SA: Effects of inspiratory oxygen concentration on endtidal carbon monoxide concentration. J Clin Monit Comput 2006, 20(2):89-94.
  • [33]Grippi MA: Respiratory mechanics. In Pulmonary Pathophysiology. Philadelphia, PA: Lippincott, Williams & Wilkins; 1995:13-39.
  文献评价指标  
  下载次数:58次 浏览次数:30次