期刊论文详细信息
BMC Medical Genomics
Transcriptional profiling of left ventricle and peripheral blood mononuclear cells in a rat model of postinfarction heart failure
Beata Burzynska1  Monika Gora1  Agata Maciejak1  Michal Maczewski2  Urszula Mackiewicz2  Dorota Tulacz1 
[1]Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
[2]Department of Clinical Physiology, Medical Centre of Postgraduate Education, Marymoncka 99/103, 02-813 Warsaw, Poland
关键词: Tetraspanin 12;    Ceruloplasmin;    Microarrays;    Gene expression profiling;    Extracellular matrix;    Myocardial infarction;    Heart failure;    Left ventricular remodelling;   
Others  :  1091369
DOI  :  10.1186/1755-8794-6-49
 received in 2013-07-26, accepted in 2013-11-01,  发布年份 2013
PDF
【 摘 要 】

Background

Myocardial infarction (MI) often results in left ventricular (LV) remodeling followed by heart failure (HF). It is of great clinical importance to understand the molecular mechanisms that trigger transition from compensated LV injury to HF and to identify relevant diagnostic biomarkers. The aim of this study was to investigate gene expression in the LV and to evaluate their reflection in peripheral blood mononuclear cells (PBMCs).

Methods

MI was induced in rats by ligation of the proximal left coronary artery. Rats with small, moderate, and large MI size were included into the experiment two months after the operation. The development of heart failure was estimated by echocardiography and catheterization. Microarrays were used to compare the LV and PBMCs transcriptomes of control and experimental animals.

Results

Only rats with a large MI developed extensive LV remodeling and heart failure. 840 transcripts were altered in LV of failing hearts, and especially numerous were those associated with the extracellular matrix. In contrast, no significant gene expression changes were seen in LVs of rats with moderate or small MI that had compensated LV injury. We showed that ceruloplasmin was similarly overexpressed in the heart and blood in response to HF, whereas downregulation of tetraspanin 12 was significant only in the PBMCs.

Conclusion

A large size of infarcted area is critical for progression of LV remodeling and HF development, associated with altered gene expression in the heart. Ceruloplasmin and tetraspanin 12 are potential convenient markers in readily obtainable PBMCs.

【 授权许可】

   
2013 Tulacz et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128171446261.pdf 2209KB PDF download
Figure 5. 49KB Image download
Figure 4. 75KB Image download
Figure 3. 88KB Image download
Figure 2. 108KB Image download
Figure 1. 82KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Sutton MG, Sharpe N: Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 2000, 101:2981-2988.
  • [2]Takano H, Hasegawa H, Nagai T, Komuro I: Implication of cardiac remodeling in heart failure: mechanisms and therapeutic strategies. Intern Med 2003, 42:465-469.
  • [3]Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG: The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 2010, 48:504-511.
  • [4]Okamoto H, Imanaka-Yoshida K: Matricellular proteins: new molecular targets to prevent heart failure. Cardiovasc Ther 2012, 30:e198-209.
  • [5]Sharma UC, Pokharel S, Evelo CT, Maessen JG: A systematic review of large scale and heterogeneous gene array data in heart failure. J Mol Cell Cardiol 2005, 38:425-432.
  • [6]Asakura M, Kitakaze M: Global gene expression profiling in the failing myocardium. Circ J 2009, 73:1568-1576.
  • [7]Schwientek P, Ellinghaus P, Steppan S, D'Urso D, Seewald M, Kassner A, Cebulla R, Schulte-Eistrup S, Morshuis M, Röfe D, El Banayosy A, Körfer R, Milting H: Global gene expression analysis in nonfailing and failing myocardium pre- and postpulsatile and nonpulsatile ventricular assist device support. Physiol Genomics 2010, 42:397-405.
  • [8]Jin H, Yang R, Awad TA, Wang F, Li W, Williams SP, Ogasawara A, Shimada B, Williams PM, de Feo G, Paoni NF: Effects of early angiotensin-converting enzyme inhibition on cardiac gene expression after acute myocardial infarction. Circulation 2001, 103:736-742.
  • [9]Brooks WW, Shen S, Conrad CH, Goldstein RH, Deng LL, Bing OH: Transcriptional changes associated with recovery from heart failure in the SHR. J Mol Cell Cardiol 2010, 49:390-401.
  • [10]Azuaje F, Zhang L, Jeanty C, Puhl SL, Rodius S, Wagner DR: Analysis of a gene co-expression network establishes robust association between Col5a2 and ischemic heart disease. BMC Med Genomics 2013, 6:13. BioMed Central Full Text
  • [11]Ojaimi C, Qanud K, Hintze TH, Recchia FA: Altered expression of a limited number of genes contributes to cardiac decompensation during chronic ventricular tachypacing in dogs. Physiol Genomics 2007, 29:76-83.
  • [12]Prat-Vidal C, Gálvez-Montón C, Nonell L, Puigdecanet E, Astier L, Solé F, Bayes-Genis A: Identification of temporal and region-specific myocardial gene expression patterns in response to infarction in swine. PLoS One 2013, 8:e54785.
  • [13]Tan Tan FL, Moravec CS, Li J, Apperson-Hansen C, McCarthy PM, Young JB, Bond M: The gene expression fingerprint of human heart failure. Proc Natl Acad Sci U S A 2002, 99:11387-11392.
  • [14]Felkin LE, Lara-Pezzi EA, Hall JL, Birks EJ, Barton PJ: Identification of genes related to heart failure using global gene expression profiling of human failing myocardium. Biochem Biophys Res Commun 2010, 393:55-60.
  • [15]Fang L, Du XJ, Gao XM, Dart AM: Activation of peripheral blood mononuclear cells and extracellular matrix and inflammatory gene profile in acute myocardial infarction. Clin Sci (Lond) 2010, 119:175-183.
  • [16]Maczewski M, Maczewska J: Hypercholesterolemia exacerbates ventricular remodeling in the rat model of myocardial infarction. J Card Fail 2006, 12:399-405.
  • [17]Mohr S, Liew CC: The peripheral-blood transcriptome: new insights into disease and risk assessment. Trends Mol Med 2007, 13:422-432.
  • [18]Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002, 30:e36.
  • [19]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal controlgenes. Genome Biol 2002, 18:3(7).
  • [20]Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M: A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines. Methods 2010, 50(4):S1-5.
  • [21]Pfeffer MA, Janice M: Memorial lecture. J of Card Fail 2002, 8(6 Suppl):S248-S252.
  • [22]Mackiewicz U, Maczewski M, Klemenska E, Brudek M, Konior A, Czarnowska E, Lewartowski BJ: Brief postinfarction calcineurin blockade affects left ventricular remodeling and Ca2+ handling in the rat. Mol Cell Cardiol 2010, 48:1307-1315.
  • [23]Calvieri C, Rubattu S, Volpe M: Molecular mechanisms underlying cardiac antihypertrophic and antifibrotic effects of natriuretic peptides. J Mol Med (Berl) 2012, 90:5-13.
  • [24]Tønnessen T, Christensen G, Oie E, Holt E, Kjekshus H, Smiseth OA, Sejersted OM, Attramadal H: Increased cardiac expression of endothelin-1 mRNA in ischemic heart failure in rats. Cardiovasc Res 1997, 33:601-610.
  • [25]Tran KL, Lu X, Lei M, Feng Q, Wu Q: Upregulation of corin gene expression in hypertrophic cardiomyocytes and failing myocardium. Am J Physiol Heart Circ Physiol 2004, 287:H1625-H631.
  • [26]Langenickel TH, Pagel I, Buttgereit J, Tenner K, Lindner M, Dietz R, Willenbrock R, Bader M: Rat corin gene: molecular cloning and reduced expression in experimental heart failure. Am J Physiol Heart Circ Physiol 2004, 287:H1516-H1521.
  • [27]Dong N, Chen S, Wang W, Zhou Y, Wu Q: Corin in clinical laboratory diagnostics. Clin Chim Acta 2012, 413:378-383.
  • [28]Ibebuogu UN, Gladysheva IP, Houng AK, Reed GL: Decompensated heart failure is associated with reduced corin levels and decreased cleavage of pro-atrial natriuretic peptide. Circ Heart Fail 2011, 4:114-120.
  • [29]Schipper ME, Scheenstra MR, van Kuik J, van Wichen DF, van der Weide P, Dullens HF, Lahpor J, de Jonge N, De Weger RA: Osteopontin: a potential biomarker for heart failure and reverse remodeling after left ventricular assist device support. J Heart Lung Transplant 2011, 30:805-810.
  • [30]Fomovsky GM, Thomopoulos S, Holmes JW: Contribution of extracellular matrix to the mechanical properties of the heart. J Mol Cell Cardiol 2010, 48:490-496.
  • [31]Polyakova V, Loeffler I, Hein S, Miyagawa S, Piotrowska I, Dammer S, Risteli J, Schaper J, Kostin S: Fibrosis in endstage human heart failure: severe changes in collagen metabolism and MMP/TIMP profiles. Int J Cardiol 2011, 151:18-33.
  • [32]Graham HK, Horn M, Trafford AW: Extracellular matrix profiles in the progression to heart failure. European Young Physiologists Symposium Keynote Lecture-Bratislava 2007. Acta Physiol (Oxf) 2008, 194:3-21.
  • [33]Spinale FG, Janicki JS, Zile MR: Membrane-associated matrix proteolysis and heart failure. Circ Res 2013, 112:195-208.
  • [34]Rysä J, Leskinen H, Ilves M, Ruskoaho H: Distinct upregulation of extracellular matrix genes in transition from hypertrophy to hypertensive heart failure. Hypertension 2005, 45:927-933.
  • [35]Spinale FG, Gunasinghe H, Sprunger PD, Baskin JM, Bradham WC: Extracellular degradative pathways in myocardial remodeling and progression to heart failure. J Card Fail 2002, 8:S332-S338.
  • [36]Hansson J, Vasan RS, Ärnlöv J, Ingelsson E, Lind L, Larsson A, Michaëlsson K, Sundström J: Biomarkers of extracellular matrix metabolism (MMP-9 and TIMP-1) and risk of stroke, myocardial infarction, and cause-specific mortality: cohort study. PLoS ONE 2011, 6:e16185.
  • [37]Devaux Y, Bousquenaud M, Rodius S, Marie PY, Maskali F, Zhang L, Azuaje F, Wagner DR: Transforming growth factor β receptor 1 is a new candidate prognostic biomarker after acute myocardial infarction. BMC Med Genomics 2011, 4:83. BioMed Central Full Text
  • [38]Shiva S, Wang X, Ringwood LA, Xu X, Yuditskaya S, Annavajjhala V, Miyajima H, Hogg N, Harris ZL, Gladwin MT: Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat Chem Biol 2006, 2:486-493.
  • [39]Lv M, Ye HG, Zhao XS, Zhao XY, Chang YJ, Liu DH, Xu LP, Huang XJ: Ceruloplasmin is a potential biomarker for aGvHD following allogeneic hematopoietic stem cell transplantation. PLoS One 2013, 8:e58735.
  • [40]Huang H, Li Y, Liu J, Zheng M, Feng Y, Hu K, Huang Y, Huang Q: Screening and identification of biomarkers in ascites related to intrinsic chemoresistance of serous epithelial ovarian cancers. PLoS One 2012, 7:e51256.
  • [41]Giurgea N, Constantinescu MI, Stanciu R, Suciu S, Muresan A: Ceruloplasmin - acute-phase reactant or endogenous antioxidant? The case of cardiovascular disease. Med Sci Monit 2005, 11:RA48-RA51.
  • [42]Wu Y, Hartiala J, Fan Y, Stewart AF, Roberts R, McPherson R, Fox PL, Allayee H, Hazen SL: Clinical and genetic association of serum ceruloplasmin with cardiovascular risk. Arterioscler Thromb Vasc Biol 2012, 32:516-522.
  • [43]Xu Y, Lin H, Zhou Y, Cheng G, Xu G: Ceruloplasmin and the extent of heart failure in ischemic and nonischemic cardiomyopathy patients. Mediators Inflamm 2013, 2013:348145.
  • [44]Dadu RT, Dodge R, Nambi V, Virani SS, Hoogeveen RC, Smith NL, Chen F, Pankow JS, Guild C, Tang WH, Boerwinkle E, Hazen SL, Ballantyne CM: Ceruloplasmin and heart failure in the atherosclerosis risk in communities study. Circ Heart Fail 2013, 6(5):936-943.
  • [45]Zhang F, Kotha J, Jennings LK, Zhang XA: Tetraspanins and vascular functions. Cardiovasc Res 2009, 83:7-15.
  • [46]Lafleur MA, Xu D, Hemler ME: Tetraspanin proteins regulate membrane type-1 matrix metalloproteinase-dependent pericellular proteolysis. Mol Biol Cell 2009, 20(7):2030-2040.
  • [47]Xu D, Sharma C, Hemler ME: Tetraspanin12 regulates ADAM10-dependent cleavage of amyloid precursor protein. FASEB J 2009, 23(11):3674-3681.
  • [48]Chan HW, Smith NJ, Hannan RD, Thomas WG: Tackling the EGFR in pathological tissue remodelling. Pulm Pharmacol Ther 2006, 19(1):74-78.
  • [49]Jiang J, Wu S, Wang W, Chen S, Peng J, Zhang X, Wu Q: Ectodomain shedding and -autocleavage of the cardiac membrane protease corin. J Biol Chem 2011, 286(12):10066-10072.
  • [50]Mancia G: Neurohumoral activation in congestive heart failure. Am Heart J 1990, 120(6 Pt 2):1532-1537.
  • [51]Troidl C, Möllmann H, Nef H, Masseli F, Voss S, Szardien S, Willmer M, Rolf A, Rixe J, Troidl K, Kostin S, Hamm C, Elsässer A: Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J Cell Mol Med 2009, 13(9B):3485-3496.
  • [52]Yáñez-Mó M, Gutiérrez-López MD, Cabañas C: Functional interplay between tetraspanins and proteases. Cell Mol Life Sci 2011, 68(20):3323-3335.
  文献评价指标  
  下载次数:47次 浏览次数:40次