期刊论文详细信息
BMC Gastroenterology
Moderate activation of IKK2-NF-kB in unstressed adult mouse liver induces cytoprotective genes and lipogenesis without apparent signs of inflammation or fibrosis
Qinghao Zhang1  Xiaohong Lei1  Hong Lu1 
[1] Department of Pharmacology, SUNY Upstate Medical University, 750 E Adams ST, Syracuse 13210, NY, USA
关键词: Fibrosis;    Inflammation;    Lipogenesis;    Mice;    Liver;    Lxr;    RelB;    NF-kB;    IKK1;    IKK2;   
Others  :  1224262
DOI  :  10.1186/s12876-015-0325-z
 received in 2014-12-29, accepted in 2015-07-21,  发布年份 2015
PDF
【 摘 要 】

Background

The NF-kB signaling, regulated by IKK1-p52/RelB and IKK2-p65, is activated by various stresses to protect or damage the liver, in context-specific manners. Two previous studies of liver-specific expression of constitutive active IKK2 (IKK2ca) showed that strong activation of IKK2-NF-kB in mouse livers caused inflammation, insulin resistance, and/or fibrosis. The purpose of this study was to understand how moderate activation of IKK2-NF-kB in adult mouse livers alters hepatic gene expression and pathophysiology.

Method

We generated mice with adult hepatocyte-specific activation of Ikk2 (Liv-Ikk2ca) using Alb-cre mice and Ikk2ca Rosa26 knockin mice in which a moderate expression of Ikk2ca transgene was driven by the endogenous Rosa26 promoter.

Results

Surprisingly, compared to wild-type mice, adult male Liv-Ikk2ca mice had higher hepatic mRNA expression of Ikk2 and classical NF-kB targets (e.g. Lcn2 and A20), as well as IKK1, NIK, and RelB, but no changes in markers of inflammation or fibrosis. Blood levels of IL-6 and MCP-1 remained unchanged, and histology analysis showed a lack of injury or infiltration of inflammatory cells in livers of Liv-Ikk2ca mice. Moreover, Liv-Ikk2ca mice had lower mRNA expression of prooxidative enzymes Cyp2e1 and Cyp4a14, higher expression of antioxidative enzymes Sod2, Gpx1, and Nqo1, without changes in key enzymes for fatty acid oxidation, glucose utilization, or gluconeogenesis. In parallel, Liv-Ikk2ca mice and wild-type mice had similar levels of hepatic reduced glutathione, endogenous reactive oxygen species, and lipid peroxidation. Additionally, Liv-Ikk2ca mice had higher Cyp3a11 without down-regulation of most drug processing genes. Regarding nuclear proteins of NF-kB subunits, Liv-Ikk2ca mice had moderately higher p65 and p50 but much higher RelB. Results of ChIP-qPCR showed that the binding of p50 to multiple NF-kB-target genes was markedly increased in Liv-Ikk2ca mice. Additionally, Liv-Ikk2ca mice had moderate increase in triglycerides in liver, which was associated with higher lipogenic factors Pparγ, Lxr, Fasn, Scd1, and CD36.

Conclusion

In summary, moderate activation of IKK2-NF-kB in unstressed adult mouse hepatocytes produces a cytoprotective gene expression profile and induces lipogenesis without apparent signs of inflammation or fibrosis, likely due to strong activation of the anti-inflammatory IKK1-RelB alternative NF-kB pathway as well as the Lxr.

【 授权许可】

   
2015 Lu et al.

【 预 览 】
附件列表
Files Size Format View
20150909031837902.pdf 3609KB PDF download
Fig. 10. 92KB Image download
Fig. 9. 16KB Image download
Fig. 8. 38KB Image download
Fig. 7. 28KB Image download
Fig. 6. 29KB Image download
Fig. 5. 36KB Image download
Fig. 4. 45KB Image download
Fig. 3. 28KB Image download
Fig. 2. 79KB Image download
Fig. 1. 63KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

【 参考文献 】
  • [1]Hayden MS, Ghosh S: NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 2012, 26(3):203-234.
  • [2]Liu F, Xia Y, Parker AS, Verma IM: IKK biology. Immunol Rev 2012, 246(1):239-253.
  • [3]Sun B, Karin M: NF-kappaB signaling, liver disease and hepatoprotective agents. Oncogene 2008, 27(48):6228-6244.
  • [4]Luedde T, Schwabe RF: NF-kappaB in the liver--linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2011, 8(2):108-118.
  • [5]Sunami Y, Leithauser F, Gul S, Fiedler K, Guldiken N, Espenlaub S, et al.: Hepatic activation of IKK/NFkappaB signaling induces liver fibrosis via macrophage-mediated chronic inflammation. Hepatology 2012, 56(3):1117-1128.
  • [6]Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, et al.: Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005, 11(2):183-190.
  • [7]Karin M, Yamamoto Y, Wang QM: The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 2004, 3(1):17-26.
  • [8]Tujios S, Fontana RJ: Mechanisms of drug-induced liver injury: from bedside to bench. Nat Rev Gastroenterol Hepatol 2011, 8(4):202-211.
  • [9]Sasaki Y, Derudder E, Hobeika E, Pelanda R, Reth M, Rajewsky K, et al.: Canonical NF-kappaB activity, dispensable for B cell development, replaces BAFF-receptor signals and promotes B cell proliferation upon activation. Immunity 2006, 24(6):729-739.
  • [10]Zhang Q, Lei X, Lu H: Alterations of epigenetic signatures in hepatocyte nuclear factor 4alpha deficient mouse liver determined by improved ChIP-qPCR and (h)MeDIP-qPCR assays. PLoS One 2014., 9(1) Article ID e84925
  • [11]Hollander PM, Ernster L: Studies on the reaction mechanism of DT diaphorase. Action of dead-end inhibitors and effects of phospholipids. Arch Biochem Biophys 1975, 169(2):560-567.
  • [12]Lu H, Cui W, Klaassen CD: Nrf2 protects against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced oxidative injury and steatohepatitis. Toxicol Appl Pharmacol 2011, 256(2):122-135.
  • [13]Ellman GL: Tissue sulfhydryl groups. Arch Biochem Biophys 1959, 82(1):70-77.
  • [14]Yoshimi A, Goyama S, Watanabe-Okochi N, Yoshiki Y, Nannya Y, Nitta E, et al.: Evi1 represses PTEN expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins. Blood 2011, 117(13):3617-3628.
  • [15]da Silva CM, Spinelli E, Rodrigues SV: Fast and sensitive collagen quantification by alkaline hydrolysis/hydroxyproline assay. Food Chem 2015, 173:619-623.
  • [16]Ling L, Cao Z, Goeddel DV: NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc Natl Acad Sci U S A 1998, 95(7):3792-3797.
  • [17]Srinivasan G, Aitken JD, Zhang B, Carvalho FA, Chassaing B, Shashidharamurthy R, et al.: Lipocalin 2 deficiency dysregulates iron homeostasis and exacerbates endotoxin-induced sepsis. J Immunol 2012, 189(4):1911-1919.
  • [18]Guo H, Jin D, Zhang Y, Wright W, Bazuine M, Brockman DA, et al.: Lipocalin-2 deficiency impairs thermogenesis and potentiates diet-induced insulin resistance in mice. Diabetes 2010, 59(6):1376-1385.
  • [19]Ma A, Malynn BA: A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat Rev Immunol 2012, 12(11):774-785.
  • [20]Yamaguchi N, Oyama M, Kozuka-Hata H, Inoue J: Involvement of A20 in the molecular switch that activates the non-canonical NF-small ka, CyrillicB pathway. Sci Rep 2013, 3:2568.
  • [21]Zordoky BN, El-Kadi AO: Role of NF-kappaB in the regulation of cytochrome p450 enzymes. Curr Drug Metab 2009, 10(2):164-178.
  • [22]Peng L, Yoo B, Gunewardena SS, Lu H, Klaassen CD, Zhong XB: RNA sequencing reveals dynamic changes of mRNA abundance of cytochromes P450 and their alternative transcripts during mouse liver development. Drug Metab Dispos 2012, 40(6):1198-1209.
  • [23]Lu H, Gunewardena S, Cui JY, Yoo B, Zhong XB, Klaassen CD: RNA-sequencing quantification of hepatic ontogeny and tissue distribution of mRNAs of phase II enzymes in mice. Drug Metab Dispos 2013, 41(4):844-857.
  • [24]Schrem H, Klempnauer J, Borlak J: Liver-enriched transcription factors in liver function and development. Part II: the C/EBPs and D site-binding protein in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. Pharmacol Rev 2004, 56(2):291-330.
  • [25]Schrem H, Klempnauer J, Borlak J: Liver-enriched transcription factors in liver function and development. Part I: the hepatocyte nuclear factor network and liver-specific gene expression. Pharmacol Rev 2002, 54(1):129-158.
  • [26]Klaassen CD, Slitt AL: Regulation of hepatic transporters by xenobiotic receptors. Curr Drug Metab 2005, 6(4):309-328.
  • [27]Zhang W, Patil S, Chauhan B, Guo S, Powell DR, Le J, et al.: FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem 2006, 281(15):10105-10117.
  • [28]Miao H, Zhang Y, Lu Z, Liu Q, Gan L: FOXO1 involvement in insulin resistance-related pro-inflammatory cytokine production in hepatocytes. Inflamm Res 2012, 61(4):349-358.
  • [29]Luedde T, Heinrichsdorff J, de Lorenzi R, De Vos R, Roskams T, Pasparakis M: IKK1 and IKK2 cooperate to maintain bile duct integrity in the liver. Proc Natl Acad Sci U S A 2008, 105(28):9733-9738.
  • [30]Dong J, Jimi E, Zeiss C, Hayden MS, Ghosh S: Constitutively active NF-kappaB triggers systemic TNFalpha-dependent inflammation and localized TNFalpha-independent inflammatory disease. Genes Dev 2010, 24(16):1709-1717.
  • [31]Gasparini C, Foxwell BM, Feldmann M: RelB/p50 regulates TNF production in LPS-stimulated dendritic cells and macrophages. Cytokine 2013, 61(3):736-740.
  • [32]Weih F, Carrasco D, Durham SK, Barton DS, Rizzo CA, Ryseck RP, et al.: Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kappa B/Rel family. Cell 1995, 80(2):331-340.
  • [33]Weih F, Durham SK, Barton DS, Sha WC, Baltimore D, Bravo R: p50-NF-kappaB complexes partially compensate for the absence of RelB: severely increased pathology in p50(−/−)relB(−/−) double-knockout mice. J Exp Med 1997, 185(7):1359-1370.
  • [34]Chen X, El Gazzar M, Yoza BK, McCall CE: The NF-kappaB factor RelB and histone H3 lysine methyltransferase G9a directly interact to generate epigenetic silencing in endotoxin tolerance. J Biol Chem 2009, 284:27857-27865.
  • [35]Lawrence T, Bebien M, Liu GY, Nizet V, Karin M: IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation. Nature 2005, 434(7037):1138-1143.
  • [36]O’Mahony A, Lin X, Geleziunas R, Greene WC: Activation of the heterodimeric IkappaB kinase alpha (IKKalpha)-IKKbeta complex is directional: IKKalpha regulates IKKbeta under both basal and stimulated conditions. Mol Cell Biol 2000, 20(4):1170-1178.
  • [37]Papa S, Bubici C, Zazzeroni F, Franzoso G: Mechanisms of liver disease: cross-talk between the NF-kappaB and JNK pathways. Biol Chem 2009, 390(10):965-976.
  • [38]Henkel T, Zabel U, van Zee K, Muller JM, Fanning E, Baeuerle PA: Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-kappa B subunit. Cell 1992, 68(6):1121-1133.
  • [39]Miao H, Zhang Y, Lu Z, Yu L, Gan L: FOXO1 increases CCL20 to promote NF-kappaB-dependent lymphocyte chemotaxis. Mol Endocrinol 2012, 26(3):423-437.
  • [40]Su D, Coudriet GM, Hyun Kim D, Lu Y, Perdomo G, Qu S, et al.: FoxO1 links insulin resistance to proinflammatory cytokine IL-1beta production in macrophages. Diabetes 2009, 58(11):2624-2633.
  • [41]Ito Y, Daitoku H, Fukamizu A: Foxo1 increases pro-inflammatory gene expression by inducing C/EBPbeta in TNF-alpha-treated adipocytes. Biochem Biophys Res Commun 2009, 378(2):290-295.
  • [42]Sekine K, Chen YR, Kojima N, Ogata K, Fukamizu A, Miyajima A: Foxo1 links insulin signaling to C/EBPalpha and regulates gluconeogenesis during liver development. EMBO J 2007, 26(15):3607-3615.
  • [43]Tikhanovich I, Cox J, Weinman SA: Forkhead box class O transcription factors in liver function and disease. J Gastroenterol Hepatol 2013, 28(Suppl 1):125-131.
  • [44]Lee DF, Kuo HP, Chen CT, Hsu JM, Chou CK, Wei Y, et al.: IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 2007, 130(3):440-455.
  • [45]Saemann MD, Haidinger M, Hecking M, Horl WH, Weichhart T: The multifunctional role of mTOR in innate immunity: implications for transplant immunity. Am J Transplant 2009, 9(12):2655-2661.
  • [46]Assenat E, Gerbal-chaloin S, Maurel P, Vilarem MJ, Pascussi JM: Is nuclear factor kappa-B the missing link between inflammation, cancer and alteration in hepatic drug metabolism in patients with cancer? Eur J Cancer 2006, 42(6):785-792.
  • [47]Plant NJ, Gibson GG: Evaluation of the toxicological relevance of CYP3A4 induction. Curr Opin Drug Discov Devel 2003, 6(1):50-56.
  • [48]Nikolaidou-Neokosmidou V, Zannis VI, Kardassis D: Inhibition of hepatocyte nuclear factor 4 transcriptional activity by the nuclear factor kappaB pathway. Biochem J 2006, 398(3):439-450.
  • [49]Morgan MJ, Liu ZG: Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 2011, 21(1):103-115.
  • [50]Josson S, Xu Y, Fang F, Dhar SK, St Clair DK, St Clair WH: RelB regulates manganese superoxide dismutase gene and resistance to ionizing radiation of prostate cancer cells. Oncogene 2006, 25(10):1554-1559.
  • [51]Pradhan M, Bembinster LA, Baumgarten SC, Frasor J: Proinflammatory cytokines enhance estrogen-dependent expression of the multidrug transporter gene ABCG2 through estrogen receptor and NF{kappa}B cooperativity at adjacent response elements. J Biol Chem 2010, 285(41):31100-31106.
  • [52]Hardwick JP, Osei-Hyiaman D, Wiland H, Abdelmegeed MA, Song BJ: PPAR/RXR regulation of fatty acid metabolism and fatty acid omega-hydroxylase (CYP4) isozymes: Implications for prevention of lipotoxicity in fatty liver disease. PPAR Res 2009, 2009:952734.
  • [53]Dinkova-Kostova AT, Talalay P: NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys 2010, 501(1):116-123.
  • [54]Krishnamurthy P, Schuetz JD: The role of ABCG2 and ABCB6 in porphyrin metabolism and cell survival. Curr Pharm Biotechnol 2011, 12(4):647-655.
  • [55]Falany CN, Johnson MR, Barnes S, Diasio RB: Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase. J Biol Chem 1994, 269(30):19375-19379.
  • [56]Jungst C, Lammert F: Cholestatic liver disease. Dig Dis 2013, 31(1):152-154.
  • [57]Ducheix S, Montagner A, Theodorou V, Ferrier L, Guillou H: The liver X receptor: a master regulator of the gut-liver axis and a target for non alcoholic fatty liver disease. Biochem Pharmacol 2013, 86(1):96-105.
  • [58]Liu Y, de Qiu K, Ma X: Liver X receptors bridge hepatic lipid metabolism and inflammation. J Dig Dis 2012, 13(2):69-74.
  • [59]Farrell GC, van Rooyen D, Gan L, Chitturi S: NASH is an inflammatory disorder: pathogenic, prognostic and therapeutic implications. Gut Liver 2012, 6(2):149-171.
  • [60]Murray S, Briasoulis E, Linardou H, Bafaloukos D, Papadimitriou C: Taxane resistance in breast cancer: mechanisms, predictive biomarkers and circumvention strategies. Cancer Treat Rev 2012, 38(7):890-903.
  文献评价指标  
  下载次数:82次 浏览次数:15次