| BMC Genomics | |
| Genome-wide Twist1 occupancy in endocardial cushion cells, embryonic limb buds, and peripheral nerve sheath tumor cells | |
| Katherine E Yutzey2  Nancy Ratner1  Mary P Lee2  | |
| [1] Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA;Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA | |
| 关键词: ChIP-seq; ChIP; Peripheral neuron sheath tumor cells; Limb buds; Endocardial cushions; Twist1; | |
| Others : 1139510 DOI : 10.1186/1471-2164-15-821 |
|
| received in 2014-05-16, accepted in 2014-09-22, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
The basic helix-loop-helix transcription factor Twist1 has well-documented roles in progenitor populations of the developing embryo, including endocardial cushions (ECC) and limb buds, and also in cancer. Whether Twist1 regulates the same transcriptional targets in different tissue types is largely unknown.
Results
The tissue-specificity of Twist1 genomic occupancy was examined in mouse ECCs, limb buds, and peripheral nerve sheath tumor (PNST) cells using chromatin immunoprecipitation followed by sequencing (Chip-seq) analysis. Consistent with known Twist1 functions during development and in cancer cells, Twist1-DNA binding regions associated with genes related to cell migration and adhesion were detected in all three tissues. However, the vast majority of Twist1 binding regions were specific to individual tissue types. Thus, while Twist1 has similar functions in ECCs, limb buds, and PNST cells, the specific genomic sequences occupied by Twist1 were different depending on cellular context. Subgroups of shared genes, also predominantly related to cell adhesion and migration, were identified in pairwise comparisons of ECC, limb buds and PNST cells. Twist1 genomic occupancy was detected for six binding regions in all tissue types, and Twist1-binding sequences associated with Chst11, Litaf, Ror2, and Spata5 also bound the potential Twist1 cofactor RREB1. Pathway analysis of the genes associated with Twist1 binding suggests that Twist1 may regulate genes associated with the Wnt signaling pathway in ECCs and limb buds.
Conclusions
Together, these data indicate that Twist1 interacts with genes that regulate adhesion and migration in different tissues, potentially through distinct sets of target genes. In addition, there is a small subset of genes occupied by Twist1 in all three tissues that may represent a core group of Twist1 target genes in multiple cell types.
【 授权许可】
2014 Lee et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150321162900954.pdf | 2154KB | ||
| Figure 6. | 71KB | Image | |
| Figure 5. | 97KB | Image | |
| Figure 4. | 53KB | Image | |
| Figure 3. | 207KB | Image | |
| Figure 2. | 90KB | Image | |
| Figure 1. | 93KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Chen ZF, Behringer RR: Twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev 1995, 9(6):686-699.
- [2]Shelton EL, Yutzey KE: Twist1 function in endocardial cushion cell proliferation, migration, and differentiation during heart valve development. Dev Biol 2008, 317(1):282-295.
- [3]Firulli BA, Redick BA, Conway SJ, Firulli AB: Mutations within helix I of Twist1 result in distinct limb defects and variation of DNA binding affinities. J Biol Chem 2007, 282(37):27536-27546.
- [4]Barnes RM, Firulli AB: A twist of insight - the role of Twist-family bHLH factors in development. Int J Dev Biol 2009, 53(7):909-924.
- [5]Lee MP, Yutzey KE: Twist1 directly regulates genes that promote cell proliferation and migration in developing heart valves. PLoS One 2011, 6(12):e29758.
- [6]Qin Q, Xu Y, He T, Qin C, Xu J: Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res 2012, 22(1):90-106.
- [7]Wirrig EE, Hinton RB, Yutzey KE: Differential expression of cartilage and bone-related proteins in pediatric and adult diseased aortic valves. J Mol Cell Cardiol 2011, 50(3):561-569.
- [8]Bildsoe H, Loebel DA, Jones VJ, Hor AC, Braithwaite AW, Chen YT, Behringer RR, Tam PP: The mesenchymal architecture of the cranial mesoderm of mouse embryos is disrupted by the loss of Twist1 function. Dev Biol 2013, 374(2):295-307.
- [9]Chakraborty S, Wirrig EE, Hinton RB, Merrill WH, Spicer DB, Yutzey KE: Twist1 promotes heart valve cell proliferation and extracellular matrix gene expression during development in vivo and is expressed in human diseased aortic valves. Dev Biol 2010, 347(1):167-179.
- [10]Chakraborty S, Cheek J, Sakthivel B, Aronow BJ, Yutzey KE: Shared gene expression profiles in developing heart valves and osteoblast progenitor cells. Physiol Genomics 2008, 35(1):75-85.
- [11]Krawchuk D, Weiner SJ, Chen YT, Lu BC, Costantini F, Behringer RR, Laufer E: Twist1 activity thresholds define multiple functions in limb development. Dev Biol 2010, 347(1):133-146.
- [12]Vrljicak P, Cullum R, Xu E, Chang AC, Wederell ED, Bilenky M, Jones SJ, Marra MA, Karsan A, Hoodless PA: Twist1 transcriptional targets in the developing atrio-ventricular canal of the mouse. PLoS One 2012, 7(7):e40815.
- [13]Ansieau S, Morel AP, Hinkal G, Bastid J, Puisieux A: TWISTing an embryonic transcription factor into an oncoprotein. Oncogene 2010, 29(22):3173-3184.
- [14]Miller SJ, Rangwala F, Williams J, Ackerman P, Kong S, Jegga AG, Kaiser S, Aronow BJ, Frahm S, Kluwe L, Mautner V, Upadhyaya M, Muir D, Wallace M, Hagen J, Quelle DE, Watson MA, Perry A, Gutmann DH, Ratner N: Large-scale molecular comparison of human schwann cells to malignant peripheral nerve sheath tumor cell lines and tissues. Cancer Res 2006, 66(5):2584-2591.
- [15]Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF: Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 2002, 296(5569):920-922.
- [16]Jessen WJ, Miller SJ, Jousma E, Wu J, Rizvi TA, Brundage ME, Eaves D, Widemann B, Kim MO, Dombi E, Sabo J, Hardiman Dudley A, Niwa-Kawakita M, Page GP, Giovannini M, Aronow BJ, Cripe TP, Ratner N: MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Invest 2013, 123(1):340-347.
- [17]Feng MY, Wang K, Shi QT, Yu XW, Geng JS: Gene expression profiling in TWIST-depleted gastric cancer cells. Anat Rec 2009, 292(2):262-270.
- [18]Zambelli F, Pesole G, Pavesi G: PscanChIP: Finding over-represented transcription factor-binding site motifs and their correlations in sequences from ChIP-Seq experiments. Nucleic Acids Res 2013, 41(Web Server issue):W535-W543.
- [19]Machanick P, Bailey TL: MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 2011, 27(12):1696-1697.
- [20]Taher L, Collette NM, Murugesh D, Maxwell E, Ovcharenko I, Loots GG: Global gene expression analysis of murine limb development. PLoS One 2011, 6(12):e28358.
- [21]Boeva V, Lermine A, Barette C, Guillouf C, Barillot E: Nebula–a web-server for advanced ChIP-seq data analysis. Bioinformatics 2012, 28(19):2517-2519.
- [22]Hutchins AP, Poulain S, Miranda-Saavedra D: Genome-wide analysis of STAT3 binding in vivo predicts effectors of the anti-inflammatory response in macrophages. Blood 2012, 119(13):e110-e119.
- [23]Lee KW, Lee NK, Ham S, Roh TY, Kim SH: Twist1 is essential in maintaining mesenchymal state and tumor-initiating properties in synovial sarcoma. Cancer Lett 2014, 343(1):62-73.
- [24]Froeschle A, Alric S, Kitzmann M, Carnac G, Aurade F, Rochette-Egly C, Bonnieu A: Retinoic acid receptors and muscle b-HLH proteins: partners in retinoid-induced myogenesis. Oncogene 1998, 16(26):3369-3378.
- [25]Ray SK, Nishitani J, Petry MW, Fessing MY, Leiter AB: Novel transcriptional potentiation of BETA2/NeuroD on the secretin gene promoter by the DNA-binding protein Finb/RREB-1. Mol Cell Biol 2003, 23(1):259-271.
- [26]Chen J, Bardes EE, Aronow BJ, Jegga AG: ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 2009, 37(Web Server issue):W305-W311.
- [27]Di Maro G, Orlandella FM, Bencivenga TC, Salerno P, Ugolini C, Basolo F, Maestro R, Salvatore G: Identification of targets of twist1 transcription factor in thyroid cancer cells. J Clin Endocrinol Metab 2014, 99(9):E1617-E1626.
- [28]Tickle C: Limb development: an international model for vertebrate pattern formation. Int J Dev Biol 2000, 44(1):101-108.
- [29]Tran PT, Shroff EH, Burns TF, Thiyagarajan S, Das ST, Zabuawala T, Chen J, Cho YJ, Luong R, Tamayo P, Salih T, Aziz K, Adam SJ, Vicent S, Nielsen CH, Withofs N, Sweet-Cordero A, Gambhir SS, Rudin CM, Felsher DW: Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis. PLoS Genet 2012, 8(5):e1002650.
- [30]Kent OA, Fox-Talbot K, Halushka MK: RREB1 repressed miR-143/145 modulates KRAS signaling through downregulation of multiple targets. Oncogene 2013, 32(20):2576-2585.
- [31]Clevers H: Wnt/beta-catenin signaling in development and disease. Cell 2006, 127(3):469-480.
- [32]Liebner S, Cattelino A, Gallini R, Rudini N, Iurlaro M, Piccolo S, Dejana E: Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol 2004, 166(3):359-367.
- [33]Alfieri CM, Cheek J, Chakraborty S, Yutzey KE: Wnt signaling in heart valve development and osteogenic gene induction. Dev Biol 2010, 338(2):127-135.
- [34]Cai X, Zhang W, Hu J, Zhang L, Sultana N, Wu B, Cai W, Zhou B, Cai CL: Tbx20 acts upstream of Wnt signaling to regulate endocardial cushion formation and valve remodeling during mouse cardiogenesis. Development 2013, 140(15):3176-3187.
- [35]Kawakami Y, Capdevila J, Buscher D, Itoh T, Rodriguez Esteban C, Izpisua Belmonte JC: WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell 2001, 104(6):891-900.
- [36]Kawakami Y, Marti M, Kawakami H, Itou J, Quach T, Johnson A, Sahara S, O'Leary DD, Nakagawa Y, Lewandoski M, Pfaff S, Evans SM, Izpisua Belmonte JC: Islet1-mediated activation of the beta-catenin pathway is necessary for hindlimb initiation in mice. Development 2011, 138(20):4465-4473.
- [37]Cooper KL, Hu JK, ten Berge D, Fernandez-Teran M, Ros MA, Tabin CJ: Initiation of proximal-distal patterning in the vertebrate limb by signals and growth. Science 2011, 332(6033):1083-1086.
- [38]Yasuhara R, Yuasa T, Williams JA, Byers SW, Shah S, Pacifici M, Iwamoto M, Enomoto-Iwamoto M: Wnt/beta-catenin and retinoic acid receptor signaling pathways interact to regulate chondrocyte function and matrix turnover. J Biol Chem 2010, 285(1):317-327.
- [39]Bradley EW, Drissi MH: Wnt5b regulates mesenchymal cell aggregation and chondrocyte differentiation through the planar cell polarity pathway. J Cell Physiol 2011, 226(6):1683-1693.
- [40]Rahrmann EP, Watson AL, Keng VW, Choi K, Moriarity BS, Beckmann DA, Wolf NK, Sarver A, Collins MH, Moertel CL, Wallace MR, Gel B, Serra E, Ratner N, Largaespada DA: Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis. Nat Genet 2013, 45(7):756-766.
- [41]Mo W, Chen J, Patel A, Zhang L, Chau V, Li Y, Cho W, Lim K, Xu J, Lazar AJ, Creighton CJ, Bolshakov S, McKay RM, Lev D, Le LQ, Parada LF: CXCR4/CXCL12 mediate autocrine cell- cycle progression in NF1-associated malignant peripheral nerve sheath tumors. Cell 2013, 152(5):1077-1090.
- [42]Ren D, Minami Y, Nishita M: Critical role of Wnt5a-Ror2 signaling in motility and invasiveness of carcinoma cells following Snail-mediated epithelial-mesenchymal transition. Genes Cells 2011, 16(3):304-315.
- [43]Lee KW, Kim JH, Han S, Sung CO, Do IG, Ko YH, Um SH, Kim SH: Twist1 is an independent prognostic factor of esophageal squamous cell carcinoma and associated with its epithelial-mesenchymal transition. Ann Surg Oncol 2012, 19(1):326-335.
- [44]Shelton EL, Yutzey KE: Tbx20 regulation of endocardial cushion cell proliferation and extracellular matrix gene expression. Dev Biol 2007, 302(2):376-388.
- [45]Vogel KS, Klesse LJ, Velasco-Miguel S, Meyers K, Rushing EJ, Parada LF: Mouse tumor model for neurofibromatosis type 1. Science 1999, 286(5447):2176-2179.
- [46]Nielsen R, Pedersen TA, Hagenbeek D, Moulos P, Siersbaek R, Megens E, Denissov S, Borgesen M, Francoijs KJ, Mandrup S, Stunnenberg HG: Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev 2008, 22(21):2953-2967.
- [47]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25.
- [48]Mi H, Muruganujan A, Thomas PD: PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 2013, 41(Database issue):D377-D386.
- [49]Zuberi K, Franz M, Rodriguez H, Montojo J, Lopes CT, Bader GD, Morris Q: GeneMANIA Prediction Server 2013 Update. Nucleic Acids Res 2013, 41(Web Server issue):W115-W122.
PDF