期刊论文详细信息
BMC Microbiology
Phenotypic and genotypic characterization of Staphylococci causing breast peri-implant infections in oncologic patients
Anna Marchese1  Andrea De Maria4  Ilaria Baldelli3  Simonetta Franchelli2  Marianna Pesce3  Ramona Barbieri5 
[1] IRCCS-AOU San Martino IST, Microbiology Unit DISC, University of Genoa, Largo Rosanna Benzi 10, Genoa, 16132, Italy;IRCCS-AOU San Martino IST, Reconstruction Plastic Surgery Unit, Genoa, Italy;IRCCS-AOU San Martino IST, Reconstruction Plastic Surgery Unit, DISC, University of Genoa, Genoa, Italy;IRCCS-AOU San Martino IST, Infectious Diseases Unit, DISSAL, University of Genoa, Genoa, Italy;Microbiology Unit DISC, University of Genoa, Genoa, Italy
关键词: MSCRAMMs;    biofilm-related genes;    ica gene;    Staphylococcal infections;    Biofilm;    Implant infections;   
Others  :  1137436
DOI  :  10.1186/s12866-015-0368-x
 received in 2014-08-12, accepted in 2015-01-29,  发布年份 2015
PDF
【 摘 要 】

Background

Staphylococcus epidermidis and S. aureus have been identified as the most common bacteria responsible for sub-clinical and overt breast implant infections and their ability to form biofilm on the implant as been reported as the essential factor in the development of this type of infections. Biofilm formation is a complex process with the participation of several distinct molecules, whose relative importance in different clinical settings has not yet been fully elucidated. To our knowledge this is the first study aimed at characterizing isolates causing breast peri-implant infections.

Results

Thirteen S. aureus and seven S. epidermidis causing breast peri-implant infections were studied.

Using the broth microdilution method and the E-test, the majority of the strains were susceptible to all antibiotics tested. Methicillin resistance was detected in two S. epidermidis. All strains had different RAPD profiles and were able to produce biofilms in microtitre plate assays but, while all S. aureus carried and were able to express icaA and icaD genes, this was only true for one S. epidermidis. Biofilm development was glucose- and NaCl-induced (5 S. aureus and 1 S. epidermidis) or glucose-induced (the remaining strains). Proteinase K and sodium metaperiodate treatment had different effects on biofilms dispersion revealing that the strains studied were able to produce chemically different types of extracellular matrix mediating biofilm formation.

All S. aureus strains harboured and expressed the atlA, clfA, FnA, eno and cna genes and the majority also carried and expressed the sasG (10/13), ebpS (10/13) genes.

All S. epidermidis strains harboured and expressed the atlE, aae, embp genes, and the majority (six strains) also carried and expressed the fbe, aap genes.

Genes for S. aureus capsular types 5 and 8 were almost equally distributed. The only leukotoxin genes detected were lukE/lukD (6/13).

Conclusions

S. aureus and S. epidermidis breast peri-implant infections are caused by heterogeneous strains with different biofilm development mechanisms.

Since the collagen adhesin (cna) gene is not ubiquitously distributed among S. aureus, this protein could have an important role in the cause of breast peri-implant infections.

【 授权许可】

   
2015 Barbieri et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150317073023216.pdf 600KB PDF download
Figure 4. 27KB Image download
Figure 3. 31KB Image download
Figure 2. 21KB Image download
Figure 1. 27KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Spiegel AJ, Butler CE: Recurrence following treatment of ductal carcinoma in situ with skin-sparing mastectomy and immediate breast reconstruction. Plast Reconstr Surg 2003, 111(Suppl 2):706-11.
  • [2]Mustonen P, Lepistö J, Papp A, Berg M, Pietiläinen T, Kataja V, et al.: The surgical and oncological safety of immediate breast reconstruction. Eur J Surg Oncol 2004, 30(Suppl 8):817-23.
  • [3]Radovanovic Z, Radovanovic D, Golubovic A, Ivkovic-Kapicl T, Bokorov B, Mandic A: Early complications after nipple-sparing mastectomy and immediate breast reconstruction with silicone prosthesis: results of 214 procedures. Scand J Surg 2010, 99(Suppl 3):115-8.
  • [4]Phillips BT, Bishawi M, Dagum AB, Khan SU, Bui DT: A systematic review of antibiotic use and infection in breast reconstruction: what is the evidence? Plast Reconstr Surg 2013, 131(Suppl 1):1-13.
  • [5]Kendrick AS, Chase CW: Salvage of an infected breast tissue expander with an implant sizer and negative pressure wound management. Plast Reconstr Surg 2008, 121(Suppl 3):138e-9.
  • [6]Otto M: Molecular basis of Staphylococcus epidermidis infections. Semin Immunopathol 2012, 34(Suppl 2):201-14.
  • [7]Jabbouri S, Sadovskaya I: Characteristics of the biofilm matrix and its role as a possible target for the detection and eradication of Staphylococcus epidermidis associated with medical implant infections. FEMS Immunol Med Microbiol 2010, 59(Suppl 3):280-91.
  • [8]Götz F: Staphylococcus and biofilms. Mol Microbiol 2002, 43(6):1367-78.
  • [9]O'Gara JP: ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 2007, 270(Suppl 2):179-88.
  • [10]Fredheim EG, Klingenberg C, Rohde H, Frankenberger S, Gaustad P, Flaegstad T, et al.: Biofilm formation by Staphylococcus haemolyticus. J Clin Microbiol 2009, 47(4):1172-80.
  • [11]Darouiche RO: Treatment of infections associated with surgical implants. N Engl J Med 2004, 350(Suppl 14):1422-9.
  • [12]Persichetti P, Giovanni Lombardo GA, Marangi GF, Gherardi G, Dicuonzo G: Capsular contracture and genetic profile of ica genes among Staphylococcus epidermidis isolates from subclinical periprosthetic infections. Plast Reconstr Surg 2011, 127(Suppl 4):1747-8.
  • [13]Montanaro L, Poggi A, Visai L, Ravaioli S, Campoccia D, Speziale P, et al.: Extracellular DNA biofilms. Int J Artif Organs 2011, 34:824-31.
  • [14]Rohde H, Burandt EC, Siemssen N, Frommelt L, Burdelski C, Wurster S, et al.: Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 2007, 28(Suppl 9):1711-20.
  • [15]Atshan SS, Nor Shamsudin M, Sekawi Z, Lung LT, Hamat RA, Karunanidhi A, Mateg Ali A, Ghaznavi-Rad E, Ghasemzadeh-Moghaddam H, Chong Seng JS, Nathan JJ, Pei CP: Prevalence of adhesion and regulation of biofilm-related genes in different clones of Staphylococcus aureus. J Biomed Biotechnol 2012; 2012:976972. http://dx.doi.org/10.1155/2012/976972.
  • [16]Cassat JE, Dunman PM, McAleese F, Murphy E, Projan SJ, Smeltzer MS: Comparative genomics of Staphylococcus aureus musculoskeletal isolates. J Bacteriol 2005, 187(Suppl 2):576-92.
  • [17]Ryding U, Flock JI, Flock M, Söderquist B, Christensson B: Expression of collagen-binding protein and types 5 and 8 capsular polysaccharide in clinical isolates of Staphylococcus aureus. J Infect Dis 1997, 176(Suppl 4):1096-9.
  • [18]McCormack VA, dos Santos Silva I: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2005, 15(Suppl 6):1159-69.
  • [19]Fluckiger U, Ulrich M, Steinhuber A, Döring G, Mack D, Landmann R, et al.: Biofilm formation, icaADBC transcription, and polysaccharide intercellular adhesin synthesis by staphylococci in a device-related infection model. Infect Immun 2005, 73(Suppl 3):1811-9.
  • [20]Franchelli S, Vassallo F, Porzio C, Mannucci M, Priano V, Schenone E, et al.: Breast implant infections after surgical reconstruction in patients with breast cancer: assessment of risk factors and pathogens over extended post-operative observation. Surg Infect (Larchmt) 2012, 13(Suppl 3):154-8.
  • [21]Rieger UM, Pierer G, Lüscher NJ, Trampuz A: Sonication of removed breast implants for improved detection of subclinical infection. Aesthetic Plast Surg 2009, 33(Suppl 3):404-8.
  • [22]European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2014) MIC determination of non-fastidious and fastidious organisms, version 4.0. http://www.eucast.org/ast_of_bacteria/mic_determination.
  • [23]European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2014) Breakpoint tables for interpretation of MICs and zone diameters, version 4.0. http://www.eucast.org/clinical_breakpoints/.
  • [24]Vannuffel P, Gigi J, Ezzedine H, Vandercam B, Delmee M, Wauters G, et al.: Specific detection of methicillin-resistant Staphylococcus species by multiplex PCR. J Clin Microbiol 1995, 33(Suppl 11):2864-7.
  • [25]Freeman DJ, Falkiner FR, Keane CT: New method for detecting slime production by coagulase-negative staphylococci. J Clin Pathol 1989, 42:872-4.
  • [26]Arciola CR, Baldassarri L, Montanaro L: Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J Clin Microbiol 2001, 39(Suppl 6):2151-6.
  • [27]Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, et al.: Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 1985, 22:996-1006.
  • [28]Roveta S, Marchese A, Schito GC: Activity of daptomycin on biofilms produced on a plastic support by Staphylococcus spp. Int J Antimicrob Agents 2008, 31(Suppl 4):321-8.
  • [29]O'Neill E, Pozzi C, Houston P, Smyth D, Humphreys H, Robinson DA, et al.: Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. J Clin Microbiol 2007, 45(Suppl 5):1379-88.
  • [30]Houston P, Rowe SE, Pozzi C, Waters EM, O'Gara JP: Essential role for the major autolysin in the fibronectin-binding protein mediated Staphylococcus aureus biofilm phenotype. Infect Immun 2011, 79:1153-65.
  • [31]Rohde H, Knobloch JK, Horstkotte MA, Mack D: Correlation of Staphylococcus aureus icaADBC genotype and biofilm expression phenotype. J Clin Microbiol 2001, 39(Suppl 12):4595-6.
  • [32]de Silva GD, Kantzanou M, Justice A, Massey RC, Wilkinson AR, Day NP, et al.: The ica operon and biofilm production in coagulase-negative Staphylococci associated with carriage and disease in a neonatal intensive care unit. J Clin Microbiol 2002, 40:382-8.
  • [33]Wootton M, Bennett PM, MacGowan AP, Walsh TR: Reduced expression of the atl autolysin gene and susceptibility to autolysis in clinical heterogeneous glycopeptide-intermediate Staphylococcus aureus(hGISA) and GISA strains. J Antimicrob Chemother 2005, 56:944-7.
  • [34]Vandecasteele SJ, Peetermans WE, Merckx R, Van Eldere J: Expression of biofilm-associated genes in Staphylococcus epidermidis during in vitro and in vivo foreign body infections. J Infect Dis 2003, 188(Suppl 5):730-7.
  • [35]Lou Q, Zhu T, Hu J, Ben H, Yang J, Yu F, et al.: Role of the SaeRS two-component regulatory system in Staphylococcus epidermidis autolysis and biofilm formation. BMC Microbiol 2011, 11:146. http://dx.doi.org/10.1186/1471-2180-11-146 BioMed Central Full Text
  • [36]Tormo MA, Knecht E, Götz F, Lasa I, Penadés JR: Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology 2005, 151(Pt 7):2465-75.
  • [37]Abraham NM, Jefferson KK: A low molecular weight component of serum inhibits biofilm formation inStaphylococcus aureus. Microb Pathog 2010, 49(Suppl 6):388-91.
  • [38]Gu J, Li H, Li M, Vuong C, Otto M, Wen Y, et al.: Bacterial insertion sequence IS256 as a potential molecular marker to discriminate invasive strains from commensal strains of Staphylococcus epidermidis. J Hosp Infect 2005, 61(Suppl 4):342-8.
  • [39]Monk AB, Archer GL: Use of outer surface protein repeat regions for improved genotyping of Staphylococcus epidermidis. J. Clin Microbiol 2007, 45(Suppl 3):730-5.
  • [40]Tristan A, Ying L, Bes M, Etienne J, Vandenesch F, Lina G: Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections. J Clin Microbiol 2003, 41:4465-7.
  • [41]Montanaro L, Arciola CR, Baldassarri L, Borsetti E: Presence and expression of collagen adhesin gene (cna) and slime production in Staphylococcus aureus strains from orthopaedic prosthesis infections. Biomaterials 1999, 20:1945-9.
  • [42]Vancraeynest D, Hermans K, Haesebrouck F: Genotypic and phenotypic screening of high and low virulence Staphylococcus aureus isolates from rabbits for biofilm formation and MSCRAMMs. Vet Microbiol 2004, 103(Suppl 3–4):241-7.
  • [43]Ugolotti E, Bandettini R, Marchese A, Gualco L, Vanni I, Borzi L, et al.: Molecular characterization of hospital-acquired methicillin-resistant Staphylococcus aureus strains in pediatric outbreaks using variable tandem repeat analysis with spa and ClfB typing. Diagn Microbiol Infect Dis 2011, 69(Suppl 2):213-7.
  • [44]de Araujo GL, Coelho LR, de Carvalho CB, Maciel RM, Coronado AZ, Rozenbaum R, et al.: Commensal isolates of methicillin-resistant Staphylococcus epidermidis are also well equipped to produce biofilm on polystyrene surfaces. J Antimicrob Chemother 2006, 57:855-64.
  • [45]Nilsson M, Frykberg L, Flock JI, Pei L, Lindberg M, Guss B: A fibrinogen-binding protein of Staphylococcus epidermidis. Infect Immun 1998, 66:2666-73.
  • [46]Sau S, Bhasin N, Wann ER, Lee JC, Foster TJ, Lee CY: The Staphylococcus aureus allelic genetic loci for serotype 5 and 8 capsule expression contain the type-specific genes flanked by common genes. Microbiology 1997, 143:2395-405.
  • [47]Lina G, Piémont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, et al.: Involvement of Panton–Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 1999, 29:1128-32.
  • [48]Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, et al.: Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun 2002, 70:631-41.
  • [49]van Belkum A, Kluytmans J, van Leeuwen W, Bax R, Quint W, Peters E, et al.: Multicenter evaluation of arbitrarily primed PCR for typing of Staphylococcus aureus strains. J Clin Microbiol 1995, 33:1537-47.
  • [50]Lina G, Boutite F, Tristan A, Bes M, Etienne J, Vandenesch F: Bacterial competition for human nasal cavity colonization: role of Staphylococcal agr alleles. Appl Environ Microbiol 2003, 69:18-23.
  文献评价指标  
  下载次数:19次 浏览次数:2次