期刊论文详细信息
BMC Cancer
Modulation of Ras signaling alters the toxicity of hydroquinone, a benzene metabolite and component of cigarette smoke
Matthew North1  Joe Shuga3  Michele Fromowitz3  Alexandre Loguinov1  Kevin Shannon2  Luoping Zhang3  Martyn T Smith3  Chris D Vulpe1 
[1] Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720, USA
[2] Department of Pediatrics and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94115, USA
[3] Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94720, USA
关键词: Yeast;    Ras;    NF1;    IRA2;    in vitro micronucleus assay;    Hydroquinone;   
Others  :  859167
DOI  :  10.1186/1471-2407-14-6
 received in 2013-05-30, accepted in 2013-12-27,  发布年份 2014
PDF
【 摘 要 】

Background

Benzene is an established human leukemogen, with a ubiquitous environmental presence leading to significant population exposure. In a genome-wide functional screen in the yeast Saccharomyces cerevisiae, inactivation of IRA2, a yeast ortholog of the human tumor suppressor gene NF1 (Neurofibromin), enhanced sensitivity to hydroquinone, an important benzene metabolite. Increased Ras signaling is implicated as a causal factor in the increased pre-disposition to leukemia of individuals with mutations in NF1.

Methods

Growth inhibition of yeast by hydroquinone was assessed in mutant strains exhibiting varying levels of Ras activity. Subsequently, effects of hydroquinone on both genotoxicity (measured by micronucleus formation) and proliferation of WT and Nf1 null murine hematopoietic precursors were assessed.

Results

Here we show that the Ras status of both yeast and mammalian cells modulates hydroquinone toxicity, indicating potential synergy between Ras signaling and benzene toxicity. Specifically, enhanced Ras signaling increases both hydroquinone-mediated growth inhibition in yeast and genotoxicity in mammalian hematopoetic precursors as measured by an in vitro erythroid micronucleus assay. Hydroquinone also increases proliferation of CFU-GM progenitor cells in mice with Nf1 null bone marrow relative to WT, the same cell type associated with benzene-associated leukemia.

Conclusions

Together our findings show that hydroquinone toxicity is modulated by Ras signaling. Individuals with abnormal Ras signaling could be more vulnerable to developing myeloid diseases after exposure to benzene. We note that hydroquinone is used cosmetically as a skin-bleaching agent, including by individuals with cafe-au-lait spots (which may be present in individuals with neurofibromatosis who have a mutation in NF1), which could be unadvisable given our findings.

【 授权许可】

   
2014 North et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724081842325.pdf 861KB PDF download
22KB Image download
50KB Image download
57KB Image download
【 图 表 】

【 参考文献 】
  • [1]Smith MT: Advances in understanding benzene health effects and susceptibility. Annu Rev Public Health 2010, 31:33-148. 132 p following 148
  • [2]Pons M, Cousins SW, Csaky KG, Striker G, Marin-Castano ME: Cigarette smoke-related hydroquinone induces filamentous actin reorganization and heat shock protein 27 phosphorylation through p38 and extracellular signal-regulated kinase 1/2 in retinal pigment epithelium: implications for age-related macular degeneration. Am J Pathol 2010, 177(3):1198-1213.
  • [3]Deisinger PJ, Hill TS, English JC: Human exposure to naturally occurring hydroquinone. J Toxicol Environ Health 1996, 47(1):31-46.
  • [4]Gill DP, Ahmed AE: Covalent binding of [14C]benzene to cellular organelles and bone marrow nucleic acids. Biochem Pharmacol 1981, 30(10):1127-1131.
  • [5]Gaskell M, McLuckie KI, Farmer PB: Genotoxicity of the benzene metabolites para-benzoquinone and hydroquinone. Chem Biol Interact 2005, 153–154:267-270.
  • [6]North M, Tandon VJ, Thomas R, Loguinov A, Gerlovina I, Hubbard AE, Zhang L, Smith MT, Vulpe CD: Genome-wide functional profiling reveals genes required for tolerance to benzene metabolites in yeast. PLoS One 2011, 6(8):e24205.
  • [7]Smith MT: The mechanism of benzene-induced leukemia: a hypothesis and speculations on the causes of leukemia. Environ Health Perspect 1996, 104(Suppl 6):1219-1225.
  • [8]Buday L, Downward J: Many faces of Ras activation. Biochim Biophys Acta 2008, 1786(2):178-187.
  • [9]Braun BS, Shannon K: Targeting Ras in myeloid leukemias. Clin Cancer Res 2008, 14(8):2249-2252.
  • [10]Ward AF, Braun BS, Shannon KM: Targeting oncogenic Ras signaling in hematologic malignancies. Blood 2012, 120(17):3397-3406.
  • [11]Yoon S, Seger R: The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 2006, 24(1):21-44.
  • [12]Tidyman WE, Rauen KA: The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev 2009, 19(3):230-236.
  • [13]Cichowski K, Jacks T: NF1 tumor suppressor gene function: narrowing the GAP. Cell 2001, 104(4):593-604.
  • [14]Parkin B, Ouillette P, Wang Y, Liu Y, Wright W, Roulston D, Purkayastha A, Dressel A, Karp J, Bockenstedt P, et al.: NF1 inactivation in adult acute myelogenous leukemia. Clin Cancer Res 2010, 16(16):4135-4147.
  • [15]Stiller CA, Chessells JM, Fitchett M: Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br J Cancer 1994, 70(5):969-972.
  • [16]Shannon KM, O'Connell P, Martin GA, Paderanga D, Olson K, Dinndorf P, McCormick F: Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med 1994, 330(9):597-601.
  • [17]Maris JM, Wiersma SR, Mahgoub N, Thompson P, Geyer RJ, Hurwitz CG, Lange BJ, Shannon KM: Monosomy 7 myelodysplastic syndrome and other second malignant neoplasms in children with neurofibromatosis type 1. Cancer 1997, 79(7):1438-1446.
  • [18]Le DT, Kong N, Zhu Y, Lauchle JO, Aiyigari A, Braun BS, Wang E, Kogan SC, Le Beau MM, Parada L, et al.: Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood 2004, 103(11):4243-4250.
  • [19]Chao RC, Pyzel U, Fridlyand J, Kuo YM, Teel L, Haaga J, Borowsky A, Horvai A, Kogan SC, Bonifas J, et al.: Therapy-induced malignant neoplasms in Nf1 mutant mice. Cancer Cell 2005, 8(4):337-348.
  • [20]Nakamura JL, Phong C, Pinarbasi E, Kogan SC, Vandenberg S, Horvai AE, Faddegon BA, Fiedler D, Shokat K, Houseman BT, et al.: Dose-dependent effects of focal fractionated irradiation on secondary malignant neoplasms in Nf1 mutant mice. Cancer Res 2011, 71(1):106-115.
  • [21]Bollag G, Clapp DW, Shih S, Adler F, Zhang YY, Thompson P, Lange BJ, Freedman MH, McCormick F, Jacks T, et al.: Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet 1996, 12(2):144-148.
  • [22]Mullally A, Ebert BL: NF1 inactivation revs up Ras in adult acute myelogenous leukemia. Clin Cancer Res 2010, 16(16):4074-4076.
  • [23]Lauchle JO, Braun BS, Loh ML, Shannon K: Inherited predispositions and hyperactive Ras in myeloid leukemogenesis. Pediatr Blood Cancer 2006, 46(5):579-585.
  • [24]Wakamatsu N, Collins JB, Parker JS, Tessema M, Clayton NP, Ton TV, Hong HH, Belinsky S, Devereux TR, Sills RC, et al.: Gene expression studies demonstrate that the K-ras/Erk MAP kinase signal transduction pathway and other novel pathways contribute to the pathogenesis of cumene-induced lung tumors. Toxicol Pathol 2008, 36(5):743-752.
  • [25]Houle CD, Ton TV, Clayton N, Huff J, Hong HH, Sills RC: Frequent p53 and H-ras mutations in benzene- and ethylene oxide-induced mammary gland carcinomas from B6C3F1 mice. Toxicol Pathol 2006, 34(6):752-762.
  • [26]Xu GF, Lin B, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Weiss R, Tamanoi F: The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 1990, 63(4):835-841.
  • [27]Weeks G, Spiegelman GB: Roles played by Ras subfamily proteins in the cell and developmental biology of microorganisms. Cell Signal 2003, 15(10):901-909.
  • [28]Shuga J, Zhang J, Samson LD, Lodish HF, Griffith LG: In vitro erythropoiesis from bone marrow-derived progenitors provides a physiological assay for toxic and mutagenic compounds. Proc Natl Acad Sci USA 2007, 104(21):8737-8742.
  • [29]Miller BM, Zitzelsberger HF, Weier HU, Adler ID: Classification of micronuclei in murine erythrocytes: immunofluorescent staining using CREST antibodies compared to in situ hybridization with biotinylated gamma satellite DNA. Mutagenesis 1991, 6(4):297-302.
  • [30]Largaespada DA, Brannan CI, Jenkins NA, Copeland NG: Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nat Genet 1996, 12(2):137-143.
  • [31]Hirai O, Miyamae Y, Fujino Y, Izumi H, Miyamoto A, Noguchi H: Prior bleeding enhances the sensitivity of the in vivo micronucleus test. Mutat Res 1991, 264(3):109-114.
  • [32]Suzuki Y, Nagae Y, Ishikawa T, Watanabe Y, Nagashima T, Matsukubo K, Shimizu H: Effect of erythropoietin on the micronucleus test. Environ Mol Mutagen 1989, 13(4):314-318.
  • [33]Irons RD, Stillman WS, Colagiovanni DB, Henry VA: Synergistic action of the benzene metabolite hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro. Proc Natl Acad Sci USA 1992, 89(9):3691-3695.
  • [34]Zhang YY, Vik TA, Ryder JW, Srour EF, Jacks T, Shannon K, Clapp DW: Nf1 regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines. J Exp Med 1998, 187(11):1893-1902.
  • [35]Zheng JH, Pyatt DW, Gross SA, Le AT, Kerzic PJ, Irons RD: Hydroquinone modulates the GM-CSF signaling pathway in TF-1 cells. Leukemia 2004, 18(7):1296-1304.
  • [36]DeCaprio AP: The toxicology of hydroquinone–relevance to occupational and environmental exposure. Crit Rev Toxicol 1999, 29(3):283-330.
  • [37]Abdelmohsen K, Gerber PA, von Montfort C, Sies H, Klotz LO: Epidermal growth factor receptor is a common mediator of quinone-induced signaling leading to phosphorylation of connexin-43: role of glutathione and tyrosine phosphatases. J Biol Chem 2003, 278(40):38360-38367.
  • [38]Zhang J, Lodish HF: Constitutive activation of the MEK/ERK pathway mediates all effects of oncogenic H-ras expression in primary erythroid progenitors. Blood 2004, 104(6):1679-1687.
  • [39]Meyer M, Rubsamen D, Slany R, Illmer T, Stabla K, Roth P, Stiewe T, Eilers M, Neubauer A: Oncogenic RAS enables DNA damage- and p53-dependent differentiation of acute myeloid leukemia cells in response to chemotherapy. PLoS One 2009, 4(11):e7768.
  • [40]Gelperin DM, White MA, Wilkinson ML, Kon Y, Kung LA, Wise KJ, Lopez-Hoyo N, Jiang L, Piccirillo S, Yu H, et al.: Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev 2005, 19(23):2816-2826.
  文献评价指标  
  下载次数:38次 浏览次数:33次