期刊论文详细信息
BMC Evolutionary Biology
MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus
Yoko Satta3  Hiroko Koike2  Masaaki Yoneda1  Toshifumi Kurosaki1  Yoshiki Yasukochi3 
[1] Japan Wildlife Research Center, 3-10-10 Shitaya, Taitou-ku, Tokyo 110-8676, Japan;The Kyushu University Museum, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka city 812-8581, Japan;Department of Evolutionary Studies of Biosystems, the Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
关键词: Ursus thibetanus;    Ursidae;    Major histocompatibility complex;    Japanese black bear;    Genetic diversity;    DQB;    Conservation genetics;    Balancing selection;   
Others  :  1139981
DOI  :  10.1186/1471-2148-12-230
 received in 2012-09-06, accepted in 2012-11-20,  发布年份 2012
PDF
【 摘 要 】

Background

The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations.

Results

Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected.

Conclusions

The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian species. This result suggests that the Japanese black bears may also retain more potential resistance against pathogens than other endangered mammalian species. To prevent further decline of potential resistance against pathogens, a conservation policy for the Japanese black bear should be designed to maintain MHC rare variants in each local population.

【 授权许可】

   
2012 Yasukochi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324032716482.pdf 5434KB PDF download
Figure 5. 94KB Image download
Figure 4. 60KB Image download
Figure 3. 83KB Image download
Figure 2. 190KB Image download
Figure 1. 94KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Japan Wildlife Research Center: Report on population status of Japanese bears in 1998. Japan Wildlife Research Center; 1999. in Japanese
  • [2]Ohnishi N, Yasukochi Y: The origin of the last Asian black bear in Kyushu Island. Mamm Sci 2010, 50:177-180. in Japanese, with English summary
  • [3]Kurihara T: Records of recent bear witnesses in Kyushu Island, Japan. Mamm Sci 2010, 50:187-193. in Japanese, with English summary
  • [4]Saitoh T, Ishibashi Y, Kanamori H, Kitahara E: Genetic status of fragmented populations of the Asian black bear Ursus thibetanus in western Japan. Popul Ecol 2001, 43:221-227.
  • [5]Ishibashi Y, Saitoh T: Phylogenetic relationships among fragmented Asian black bear (Ursus thibetanus) populations in western Japan. Conservat Genet 2004, 5:311-323.
  • [6]Ohnishi N, Saitoh T, Ishibashi Y, Oi T: Low genetic diversities in isolated populations of the Asian black bear (Ursus thibetanus) in Japan, in comparison with large stable populations. Conservat Genet 2007, 8:1331-1337.
  • [7]Ohnishi N, Uno R, Ishibashi Y, Tamate HB, Oi T: The influence of climatic oscillations during the Quaternary Era on the genetic structure of Asian black bears in Japan. Heredity 2009, 102:579-589.
  • [8]Yasukochi Y, Nishida S, Han S-H, Kurosaki T, Yoneda M, Koike H: Genetic structure of the Asiatic black bear in Japan using mitochondrial DNA analysis. J Hered 2009, 100:297-308.
  • [9]Ohnishi N, Yuasa T, Morimitsu Y, Oi T: Mass-intrusion-induced temporary shift in the genetic structure of an Asian black bear population. Mamm Stud 2011, 36:67-71.
  • [10]Yoneda M, Mano T: The present situation and issues for estimating population size and monitoring population trends of bears in Japan. Mamm Sci 2011, 51:79-95. in Japanese, with English summary
  • [11]Yamamoto1 T, Oka T, Ohnishi N, Tanaka H, Takatsuto N, Okumura Y: Genetic Characterization of Northernmost Isolated Population of Asian Black Bear (Ursus thibetanus) in Japan. Mamm Stud 2012, 37:85-91.
  • [12]Uno R, Kondo M, Yuasa T, Yamauchi K, Tsuruga H, Tamate HB, Yoneda M: Assessment of genotyping accuracy in a non-invasive DNA-based population survey of Asiatic black bears (Ursus thibetanus): lessons from a large-scale pilot study in Iwate prefecture, northern Japan. Popul Ecol 2012, 54:509-519.
  • [13]Ministry of the Environment: Threatened Wildlife of Japan—Red Data Book. 2nd edition. Japan Wildlife Research Center; 2002:1. [Mammalia] in Japanese
  • [14]Klein J, Takahata N: The major histocompatibility complex and the quest for origins. Immunol Rev 1990, 113:5-25.
  • [15]Man B: Complete sequence and gene map of a human major histocompatibility complex. The MHC sequencing consortium. Nature 1999, 401:921-923.
  • [16]Delisle I, Strobeck C: A phylogeny of the Caniformia (order Carnivora) based on 12 complete protein-coding mitochondrial genes. Mol Phylogenet Evol 2005, 37:192-201.
  • [17]Yu L, Luan PT, Jin W, Ryder OA, Chemnick LG, Davis HA, Zhang YP: Phylogenetic utility of nuclear introns in interfamilial relationships of Caniformia (order Carnivora). Syst Biol 2011, 60:175-187.
  • [18]Hoelzel AR, Stephens JC, O’Brien SJ: Molecular genetic diversity and evolution at the MHC DQB locus in four species of pinnipeds. Mol Biol Evol 1999, 16:611-618.
  • [19]Lento GM, Baker CS, David V, Yuhki N, Gales NJ, O’Brien SJ: Automated single-strand conformation polymorphism reveals low diversity of a Major Histocompatibility Complex Class II gene in the threatened New Zealand sea lion. Mol Ecol Notes 2003, 3:346-349.
  • [20]Weber DS, Stewart BS, Schienman J, Lehman N: Major histocompatibility complex variation at three class II loci in the northern elephant seal. Mol Ecol 2004, 13:711-718.
  • [21]Froeschke G, Sommer S: MHC class II DRB variability and parasite load in the striped mouse (Rhabdomys pumilio) in the Southern Kalahari. Mol Biol Evol 2005, 22:1254-1259.
  • [22]Smith S, Belov K, Hughes J: MHC screening for marsupial conservation: extremely low levels of class II diversity indicate population vulnerability for an endangered Australian marsupial. Conservat Genet 2009, 11:269-278.
  • [23]Bowen L, Aldridge BM, Gulland F, Woo J, Van Bonn W, DeLong R, Stott JL, Johnson ML: Molecular characterization of expressed DQA and DQB genes in the California sea lion (Zalophus californianus). Immunogenetics 2002, 54:332-347.
  • [24]Bowen L, Aldridge BM, Gulland F, Van Bonn W, DeLong R, Melin S, Lowenstine LJ, Stott JL, Johnson ML: Class II multiformity generated by variable MHC-DRB region configurations in the California sea lion (Zalophus californianus). Immunogenetics 2004, 56:12-27.
  • [25]Siddle HV, Marzec J, Cheng Y, Jones M, Belov K: MHC gene copy number variation in Tasmanian devils: implications for the spread of a contagious cancer. Proc Biol Sci 2010, 277:2001-2006.
  • [26]Lane A, Cheng Y, Wright B, Hamede R, Levan L, Jones M, Ujvari B, Belov K: New insights into the role of MHC diversity in devil facial tumour disease. PLoS One 2012, 7:e36955.
  • [27]Mainguy J, Worley K, Côté SD, Coltman DW: Low MHC DRB class II diversity in the mountain goat: past bottlenecks and possible role of pathogens and parasites. Conservat Genet 2007, 8:885-891.
  • [28]Zeng CJ, Yu JQ, Pan HJ, Wan QH, Fang SG: Assignment of the giant panda MHC class II gene cluster to chromosome 9q by fluorescence in situ hybridization. Cytogene Genome Res 2005, 109:533.
  • [29]Zeng CJ, Pan HJ, Gong SB, Yu JQ, Wan QH, Fang SG: Giant panda BAC library construction and assembly of a 650-kb contig spanning major histocompatibility complex class II region. BMC Genom 2007, 8:315. BioMed Central Full Text
  • [30]Wan QH, Zhu L, Wu H, Fang SG: Major histocompatibility complex class II variation in the giant panda (Ailuropoda melanoleuca). Mol Ecol 2006, 15:2441-2450.
  • [31]Wan QH, Zeng CJ, Ni XW, Pan HJ, Fang SG: Giant panda genomic data provide insight into the birth-and-death process of mammalian major histocompatibility complex class II genes. PLoS One 2009, 4:11.
  • [32]Zhu L, Ruan XD, Ge YF, Wan QH, Fang SG: Low major histocompatibility complex class II DQA diversity in the Giant Panda (Ailuropoda melanoleuca). BMC Genet 2007, 8:29.
  • [33]Pan HJ, Wan QH, Fang SG: Molecular characterization of major histocompatibility complex class I genes from the giant panda (Ailuropoda melanoleuca). Immunogenetics 2008, 60:185-193.
  • [34]Chen YY, Zhang YY, Zhang HM, Ge YF, Wan QH, Fang SG: Natural selection coupled with intragenic recombination shapes diversity patterns in the major histocompatibility complex class II genes of the giant panda. J Exp Zool B Mol Dev Evol 2010, 314:208-223.
  • [35]Goda N, Mano T, Masuda R: Genetic diversity of the MHC class-II DQA gene in brown bears (Ursus arctos) on Hokkaido, Northern Japan. Zoolog Sci 2009, 26:530-535.
  • [36]Goda N, Mano T, Kosintsev P, Vorobiev A, Masuda R: Allelic diversity of the MHC class II DRB genes in brown bears (Ursus arctos) and a comparison of DRB sequences within the family Ursidae. Tissue Antigens 2010, 76:404-410.
  • [37]Kuduk K, Babik W, Bojarska K, Sliwinska EB, Kindberg J, Taberlet P, Swenson JE, Radwan J: Evolution of major histocompatibility complex class I and class II genes in the brown bear. BMC Evol Biol 2012, 12:197. BioMed Central Full Text
  • [38]Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK: High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Nat Acad Sci USA 2004, 101:3490-3494.
  • [39]Yasukochi Y, Kurosaki T, Yoneda M, Koike H: Identification of the expressed MHC class II DQB gene of the Asiatic black bear, Ursus thibetanus, in Japan. Gene Genet Syst 2010, 85:147-155.
  • [40]Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC: Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 1993, 364:33-39.
  • [41]Stern LJ, Wiley DC: Antigenic peptide binding by class I and class II histocompatibility proteins. Structure 1994, 2:245-251.
  • [42]Yoneda M: The local population division, conservation and management for the Asiatic black bear. Landscape Stud 2001, 64:314-317. in Japanese
  • [43]Sawyer S: Statistical tests for detecting gene conversion. Mol Biol Evol 1989, 6:526-538.
  • [44]Satta Y: Balancing selection at HLA loci. In The Proceedings of the 17th Taniguchi Symposium. Edited by Takahata N. Science Society Press, Tokyo: Japan; 1992:111-131.
  • [45]Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P: RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics (Oxford, England) 2010, 26:2462-2463.
  • [46]Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4:406-425.
  • [47]Zhang J, Rosenberg HF, Nei M: Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Nat Acad Sci USA 1998, 95:3708-3713.
  • [48]Yang Z, Nielsen R, Goldman N, Pedersen AM: Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 2000, 155:431-449.
  • [49]Yang Z, Wong WSW, Nielsen R: Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 2005, 22:1107-1118.
  • [50]Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24:1586-1591.
  • [51]Wilson DJ, McVean G: Estimating diversifying selection and functional constraint in the presence of recombination. Genetics 2006, 172:1411-1425.
  • [52]Li W: Molecular Evolution. Sunderland, Massachusetts: Sinauer Associates; 1997.
  • [53]Krause J, Unger T, Noçon A, Malaspinas AS, Kolokotronis SO, Stiller M, Soibelzon L, Spriggs H, Dear PH, Briggs AW, Bray SC, O’Brien SJ, Rabeder G, Matheus P, Cooper A, Slatkin M, Pääbo S, Hofreiter M: Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary. BMC Evol Biol 2008, 8:220. BioMed Central Full Text
  • [54]Bon C, Caudy N, De Dieuleveult M, Fosse P, Philippe M, Maksud F, Beraud-Colomb É, Bouzaid E, Kefi R, Laugier C, Rousseau B, Casane D, Van Der Plicht J, Elalouf JM: Deciphering the complete mitochondrial genome and phylogeny of the extinct cave bear in the Paleolithic painted cave of Chauvet. Proc Nat Acad Sci USA 2008, 105:17447-17452.
  • [55]Dobson M, Kawamura Y: Origin of the Japanese land mammal fauna: allocation of extant species to historically-based categories. Quat Res 1998, 37:385-395.
  • [56]IUCN Red List of Threatened Species; Version 2012.8. [www.iucnredlist.org]
  • [57]Frankham R, Ballou JD, Briscoe DA: Introduction to Conservation Genetics. Cambridge: Cambridge University Press; 2002.
  • [58]Takahata N, Satta Y, Klein J: Polymorphism and balancing selection at major histocompatibility complex loci. Genetics 1992, 130:925-938.
  • [59]Del Guercio MF, Sidney J, Hermanson G, Perez C, Grey HM, Kubo RT, Sette A: Binding of a peptide antigen to multiple HLA alleles allows definition of an A2-like supertype. J Immunol 1995, 154:685-693.
  • [60]Sidney J, Del Guercio MF, Southwood S, Engelhard VH, Appella E, Rammensee HG, Falk K, Rötzschke O, Takiguchi M, Kubo RT: Several HLA alleles share overlapping peptide specificities. J Immunol 1995, 154:247-259.
  • [61]Greenbaum J, Sidney J, Chung J, Brander C, Peters B, Sette A: Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics 2011, 63:325-335.
  • [62]Hughes AL, Nei M: Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 1988, 335:167-170.
  • [63]Hughes AL, Nei M: Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Nat Acad Sci USA 1989, 86:958-962.
  • [64]Takahata N, Nei M: Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 1990, 124:967-978.
  • [65]Takahata N: A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. Proc Nat Acad Sci USA 1990, 87:2419-2423.
  • [66]Satta Y: Balancing selection at HLA loci. In Mechanisms of molecular evolution. Edited by Takahata N, Clark A. Sunderland, Massachusetts: Sinauer Associates; 1993:129-149.
  • [67]Sutton JT, Nakagawa S, Robertson BC, Jamieson IG: Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes. Mol Ecol 2011, 20:4408-20.
  • [68]Ejsmond MJ, Babik W, Radwan J: MHC allele frequency distributions under parasite-driven selection: A simulation model. BMC Evol Biol 2010, 10:332. BioMed Central Full Text
  • [69]Edwards SV, Grahn M, Potts WK: Dynamics of Mhc evolution in birds and crocodilians: amplification of class II genes with degenerate primers. Mol Ecol 1995, 4:719-729.
  • [70]Alcaide M, Edwards SV, Negro JJ, Serrano D, Tella JL: Extensive polymorphism and geographical variation at a positively selected MHC class II B gene of the lesser kestrel (Falco naumanni). Mol Ecol 2008, 17:2652-2665.
  • [71]Murray BW, Malik S, White BN: Sequence variation at the major histocompatibility complex locus DQ beta in beluga whales (Delphinapterus leucas). Mol Biol Evol 1995, 12:582-593.
  • [72]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [73]Jones D, Taylor W, Thornton J: The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992, 8:275-282.
  • [74]Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59:307-321.
  • [75]Bryant D, Moulton V: Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 2004, 21:255-265.
  • [76]Huson DH, Bryant D: Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006, 23:254-267.
  • [77]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [78]Rambaut A: Tree Figure Drawing Tool Version 1.3.1. 2009.
  • [79]Excoffier L, Laval G, Schneider S: Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinformatics Online 2005, 1:47-50.
  • [80]Hudson RR, Boos DD, Kaplan NL: A statistical test for detecting geographic subdivision. Mol Biol Evol 1992, 9:138-151.
  • [81]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25:1451-1452.
  • [82]Hedrick PW: A standardized genetic differentiation measure. Evolution 2005, 59:1633-1638.
  • [83]Jost L: GST and its relatives do not measure differentiation. Mol Ecol 2008, 17:4015-4026.
  • [84]Crawford NG: SMOGD: Software for the Measurement of Genetic Diversity. Mol Ecol Resour 2010, 10:556-557.
  • [85]Wu TT, Kabat EA: An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 1970, 132:211-250.
  • [86]Jukes T, Cantor C: Evolution of protein molecules. In Mammalian protein metabolism. Edited by Munro H. New York: Academic Press; 1969:21-132.
  • [87]Nielsen R, Yang Z: Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 1998, 148:929-936.
  • [88]Sommer S: The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2005, 2:16. BioMed Central Full Text
  • [89]Satta Y, O’hUigin C, Takahata N, Klein J: Intensity of natural selection at the major histocompatibility complex loci. Proc Nat Acad Sci USA 1994, 91:7184-7188.
  • [90]Nishida S, Tachi T, Baba Y, Hayashi K, Kawanami N, Koike H: DNA analysis of the Asiatic black bear in the Tohoku region using hair-trap samples. Report on model project of networking maintenance for habitat of wildlife. Wildlife Research Center, Tokyo: Japan; 2002. (in Japanese)
  • [91]Marsden CD, Woodroffe R, Mills MGL, McNutt JW, Creel S, Groom R, Emmanuel M, Cleaveland S, Kat P, Rasmussen GS, Ginsberg J, Lines R, André JM, Begg C, Wayne RK, Mable BK: Spatial and temporal patterns of neutral and adaptive genetic variation in the endangered African wild dog (Lycaon pictus). Mol Ecol 2012, 21:1379-1393.
  • [92]Castro-Prieto A, Wachter B, Sommer S: Cheetah paradigm revisited: MHC diversity in the world’s largest free-ranging population. Mol Biol Evol 2011, 28:1455-1468.
  • [93]Becker L, Nieberg C, Jahreis K, Peters E: MHC class II variation in the endangered European mink Mustela lutreola (L. 1761)–consequences for species conservation. Immunogenetics 2009, 61:281-288.
  • [94]Niranjan SK, Deb SM, Kumar S, Mitra A, Sharma A, Sakaram D, Naskar S, Sharma D, Sharma SR: Allelic diversity at MHC class II DQ loci in buffalo (Bubalus bubalis): evidence for duplication. Vet Immunol Immunopathol 2010, 138:206-212.
  • [95]Sena L, Schneider MPC, Brenig BB, Honeycutt RL, Honeycutt D, Womack JE, Skow LC: Polymorphism and gene organization of water buffalo MHC-DQB genes show homology to the BoLA DQB region. Anim Genet 2011, 42:378-385.
  • [96]Diaz D, Naegeli M, Rodriguez R, Nino-Vasquez JJ, Moreno A, Patarroyo ME, Pluschke G, Daubenberger CA: Sequence and diversity of MHC DQA and DQB genes of the owl monkey Aotus nancymaae. Immunogenetics 2000, 51:528-537.
  • [97]Meyer-Lucht Y, Sommer S: MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis). Mol Ecol 2005, 14:2233-2243.
  文献评价指标  
  下载次数:23次 浏览次数:9次