BMC Genetics | |
QTL mapping and epistatic interaction analysis in asparagus bean for several characterized and novel horticulturally important traits | |
Guojing Li1  Sha Wang1  Dehui Qin1  Yonghua Liu1  Zhongfu Lu1  Tingting Hu1  Baogen Wang1  Xiaohua Wu1  Pei Xu1  | |
[1] Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, 310021, Hangzhou, People’s Republic of China | |
关键词: RIL; QTL; Pod number; Node to first flower; Leaf senescence; Flowering time; Epistasis; Cowpea; Asparagus bean; | |
Others : 1087387 DOI : 10.1186/1471-2156-14-4 |
|
received in 2012-05-29, accepted in 2013-01-22, 发布年份 2013 | |
【 摘 要 】
Background
Asparagus bean (Vigna. unguiculata. ssp sesquipedalis) is a subspecies and special vegetable type of cowpea (Vigna. unguiculata L. Walp.) important in Asia. Genetic basis of horticulturally important traits of asparagus bean is still poorly understood, hindering the utilization of targeted, DNA marker-assisted breeding in this crop. Here we report the identification of quantitative trait loci (QTLs) and epistatic interactions for four horticultural traits, namely, days to first flowering (FLD), nodes to first flower (NFF), leaf senescence (LS) and pod number per plant (PN) using a recombinant inbred line (RIL) population of asparagus bean.
Results
A similar genetic mode of one major QTL plus a few minor QTLs was found to dominate each of the four traits, with the number of QTLs for individual traits ranging from three to four. These QTLs were distributed on 7 of the 11 chromosomes. Major QTLs for FLD, NFF and LS were co-localized on LG 11, indicative of tight linkage. Genome wide epistasis analysis detected two and one interactive locus pairs that significantly affect FLD and LS, respectively, and the epistatic QTLs for FLD appeared to work in different ways. Synteny based comparison of QTL locations revealed conservation of chromosome regions controlling these traits in related legume crops.
Conclusion
Major, minor, and epistatic QTLs were found to contribute to the inheritance of the FLD, NFF, LS, and PN. Positions of many of these QTLs are conserved among closely related legume species, indicating common mechanisms they share. To our best knowledge, this is the first QTL mapping report using an asparagus bean × asparagus bean intervarietal population and provides marker-trait associations for marker-assisted approaches to selection.
【 授权许可】
2013 Xu et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150116025712806.pdf | 3196KB | download | |
Figure 3. | 42KB | Image | download |
Figure 2. | 142KB | Image | download |
Figure 1. | 45KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Ehlers JD, Hall AE: Cowpea (Vigna unguiculata L. Walp). Field Crops Res 1996, 53:187-204.
- [2]Timko MP, Ehlers JD, Roberts PA: Cowpea. In Pulses, sugar and tuber crops, Genome mapping and molecular breeding in plants, vol 3. Edited by Kole C. Springer, Berlin Heidelberg; 2007:49-67.
- [3]Xu P, Wu XH, Wang BG, Liu YH, Qin DH, Ehlers JF, Close TJ, Hu TT, Lu ZF, Li GJ: Development and polymorphism of Vigna unguiculata ssp. unguiculata microsatellite markers used for phylogenetic analysis in asparagus bean (Vigna unguiculata ssp. sesquipedialis. L. Verdc.). Mol Breeding 2010, 25:675-684.
- [4]Fang JG, Chao CCT, Roberts PA, Ehlers JD: Genetic diversity of cowpea [Vigna unguiculata. L. Walp.] in four West African and USA breeding programs as determined by AFLP analysis. Genet Resour Crop Ev 1996, 54:1197-1209.
- [5]Xu P, Wu XH, Wang BG, Luo J, Liu YH, Ehlers JD, Close TJ, Philip RA, Lu ZF, Wang S, Li GJ: Genome wide linkage disequilibrium in Chinese asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm: implications for domestication history and genome wide association studies. Heredity 2012, 109:34-40.
- [6]Muchero W, Diop NN, Bhat PR, Fenton RD, Wanamaker S, Pottorff M, Hearne S, Cisse N, Fatokun C, Ehlers JD, Roberts PA, Close TJ: A consensus genetic map of cowpea [Vigna unguiculata L. Walp] and synteny based on EST-derived SNPs. PNAS 2009, 106:18159-18164.
- [7]Lucas MR, Diop N-N, Wanamaker S, Ehlers JD, Roberts PA, Close TJ: Cowpea-soybean synteny clarified through an improved genetic map. Plant Genome 2011, 4:218-225.
- [8]Xu P, Wu X, Wang B, Liu Y, Ehlers JD, Close TJ, Roberts PA, Diop NN, Qin D, Hu T, Lu Z, Li G: A SNP and SSR based genetic map of asparagus bean (Vigna. unguiculata ssp. sesquipedialis) and comparison with the broader species. PLoS One 2011, 6:e15952.
- [9]Xu P, Hu T, Yang Y, Wu X, Wang B, Liu Y, Qin D, Ehlers JD, Close TC, Lu Z, Li G: Mapping genes governing flower and seed coat color in asparagus bean (Vigna. unguiculata. ssp sesquipedalis) based on SNP and SSR markers. HortSci 2011, 46:1102-1104.
- [10]Ehlers JD, Hall AE: Genotypic classification of cowpea based on responses to heat and photoperiod. Crop Sci 1996, 36:673-679.
- [11]Kongjaimun A, Kaga A, Tomooka N, Somta P, Vaughan DA, Srinives P: The genetics of domestication of yardlong bean, Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis. Ann Bot 2012, 109:1185-2000.
- [12]Andargie M, Pasquet RS, Gowda BS, Muluvi GM, Timko MP: Construction of a SSR-based genetic map and identification of QTL for domestication traits using recombinant inbred lines from a cross between wild and cultivated cowpea (V. unguiculata (L.) Walp.). Mol Breeding 2011, 28:413-420.
- [13]Ubi BE, Mignouna H, Thottappilly G: Construction of a genetic linkage map and QTL analysis using a recombinant inbred population derived from an intersubspecific cross of cowpea (Vigna unguiculata (L.) Walp.). Breed Sci 2000, 50:161-172.
- [14]Menéndez CM, Hall AE, Gepts P: A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theor Appl Genet 1997, 95:1210-1217.
- [15]Fatokun CA, Danesh D, Menancio-Hautea D, Young ND: A linkage map for cowpea [Vigna unguiculata (L.) Walp.] based on DNA markers. In A compilation of linkage and restriction maps of genetically studied organisms, Genetic maps 1992. 6th edition. Edited by O’Brien JS. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1993:256-6. 258
- [16]Watanabe S, Tajuddin T, Yamanaka N, Hayashi M, Harada K: Analysis of QTLs for reproductive development and seed quality traits in soybean using recombinant inbred lines. Breed Sci 2004, 54:399-407.
- [17]Liu B, Fujita T, Yan ZH, Sakamoto S, Xu D, Abe J: QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot 2007, 100:1027-1038.
- [18]Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park BS, Choi SR, Lim YP, Meng J: Flowering time quantitative trait Loci analysis of oilseed brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 2007, 177:2433-2444.
- [19]Lin F, Xue SL, Tian DG, Li CJ, Cao Y, Zhang ZZ, Zhang CQ, Ma ZQ: Mapping chromosomal regions affecting flowering time in a spring wheat RIL population. Euphytica 2008, 164:769-777.
- [20]Timmerman-Vaughan GM, Mills A, Whitfield C, Frew T, Butler R, Murray S, Lakeman M, McCallum J, Russell A, Wilson D: Linkage mapping of QTL for seed yield, yield Components, and developmental traits in pea. Crop Sci 2005, 45:1336-1344.
- [21]Isemura T, Kaga A, Konishi S, Ando T, Tomooka N, Han OK, Vaughan DA: Genome dissection of traits related to domestication in azuki bean (Vigna angularis) and comparison with other warm-season legumes. Ann Bot 2007, 100:1053-1071.
- [22]Gondo T, Sato S, Okumura K, Tabata S, Akashi R, Isobe S: Quantitative trait locus analysis of multiple agronomic traits in the model legume Lotus japonicus. Genome 2007, 50:627-637.
- [23]Zhang D, Cheng H, Wang H, Zhang H, Liu C, Yu D: Identification of genomic regions determining flower and pod numbers development in soybean (Glycine maxL.). J Genet Genomics 2010, 37:545-556.
- [24]Beattie AD, Larsen J, Michaels TE, Pauls KP: Mapping quantitative trait loci for a common bean (Phaseolus vulgaris L.) ideotype. Genome 2003, 46:411-422.
- [25]Cui SY, Geng LY, Meng QC, Yu DY: QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L.) during seedling stage. Acta Agron Sin 2007, 33:378-383.
- [26]Wingler A, Purdy SJ, Edwards SA, Chardon F, Masclaux-Daubresse C: QTL analysis for sugar-regulated leaf senescence supports flowering-dependent and -independent senescence pathways. New Phytol 2010, 185:420-433.
- [27]Van O: MapQTL 5, Software for the mapping of quantitative trait loci in experimental populations. Edited by Kyazma BV. Wageningen, Netherlands; 2004.
- [28]Doerge RW, Rebai A: Significance thresholds for QTL interval mapping tests. Heredity 1996, 76:459-464.
- [29]Manly KF, Cudmore RH Jr, Meer JM: Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 2001, 12:930-932.