期刊论文详细信息
BMC Microbiology
pZMO7-Derived shuttle vectors for heterologous protein expression and proteomic applications in the ethanol-producing bacterium Zymomonas mobilis
Rory M Watt3  Myriam Seemann1  Donnabella C Lacap-Bugler4  Wen-yang Chen3  Lok Yan So2 
[1]Université de Strasbourg, CNRS UMR 7177, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, Strasbourg 67081Cedex, France
[2]Present Address: Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
[3]Oral Biosciences Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong
[4]Oral Diagnosis and Polyclinics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong
关键词: Microbial biotechnology;    Affinity purification;    Proteomics;    Quantitative PCR;    Replication;    Shuttle vector;    Plasmid;    Zymomonas mobilis;   
Others  :  1141648
DOI  :  10.1186/1471-2180-14-68
 received in 2013-05-06, accepted in 2014-03-06,  发布年份 2014
PDF
【 摘 要 】

Background

The ethanol-producing bacterium Zymomonas mobilis has attracted considerable scientific and commercial interest due to its exceptional physiological properties. Shuttle vectors derived from native plasmids have previously been successfully used for heterologous gene expression in this bacterium for a variety of purposes, most notably for metabolic engineering applications.

Results

A quantitative PCR (qPCR) approach was used to determine the copy numbers of two endogenous double stranded DNA plasmids: pZMO1A (1,647 bp) and pZMO7 (pZA1003; 4,551 bp) within the NCIMB 11163 strain of Z. mobilis. Data indicated pZMO1A and pZMO7 were present at ca. 3-5 and ca. 1-2 copies per cell, respectively. A ca. 1,900 bp fragment from plasmid pZMO7 was used to construct two Escherichia coliZ. mobilis shuttle vectors (pZ7C and pZ7-184). The intracellular stabilities and copy numbers of pZ7C and pZ7-184 were characterized within the NCIMB 11163, ATCC 29191 and (ATCC 10988-derived) CU1 Rif2 strains of Z. mobilis. Both shuttle vectors could be stably maintained within the ATCC 29191 strain (ca. 20-40 copies per cell), and the CU1 Rif2 strain (ca. 2-3 copies per cell), for more than 50 generations in the absence of an antibiotic selectable marker. A selectable marker was required for shuttle vector maintenance in the parental NCIMB 11163 strain; most probably due to competition for replication with the endogenous pZMO7 plasmid molecules. N-terminal glutathione S-transferase (GST)-fusions of four endogenous proteins, namely the acyl-carrier protein (AcpP); 2-dehydro-3-deoxyphosphooctonate aldolase (KdsA); DNA polymerase III chi subunit (HolC); and the RNA chaperone protein Hfq; were successfully expressed from pZ7C-derived shuttle vectors, and their protein-protein binding interactions were analyzed in Z. mobilis ATCC 29191. Using this approach, proteins that co-purified with AcpP and KdsA were identified.

Conclusions

We show that a shuttle vector-based protein affinity ‘pull-down’ approach can be used to probe protein interaction networks in Z. mobilis cells. Our results demonstrate that protein expression plasmids derived from pZMO7 have significant potential for use in future biological or biotechnological applications within Z. mobilis.

【 授权许可】

   
2014 So et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327101728851.pdf 2382KB PDF download
Figure 4. 115KB Image download
Figure 3. 58KB Image download
Figure 2. 109KB Image download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Swings J, De Ley J: The biology of Zymomonas. Bacteriol Rev 1977, 41(1):1-46.
  • [2]Doelle HW, Kirk L, Crittenden R, Toh H, Doelle MB: Zymomonas mobilis − science and industrial application. Crit Rev Biotechnol 1993, 13(1):57-98.
  • [3]Sahm H, Bringer-Meyer S, Sprenger GA: The genus Zymomonas. Prokaryotes 2006, 5:201-221.
  • [4]Rogers PL, Jeon YJ, Lee KJ, Lawford HG: Zymomonas mobilis for fuel ethanol and higher value products. Adv Biochem Eng Biotechnol 2007, 108:263-288.
  • [5]Buchholz SE, Eveleigh DE: Genetic modification of Zymomonas mobilis. Biotechnol Adv 1990, 8(3):547-581.
  • [6]Muro AC, Rodriguez E, Abate CM, Sineriz F: Levan production using mutant strains of Zymomonas mobilis in different culture conditions. Biotechnol Lett 2000, 22(20):1639-1642.
  • [7]Ananthalakshmy VK, Gunasekaran P: Overproduction of levan in Zymomonas mobilis by using cloned sacB gene. Enz Microb Tech 1999, 25(1–2):109-115.
  • [8]Uhlenbusch I, Sahm H, Sprenger GA: Expression of an L-Alanine Dehydrogenase Gene in Zymomonas mobilis and Excretion of L-Alanine. Appl Environ Microbiol 1991, 57(5):1360-1366.
  • [9]Deanda K, Zhang M, Eddy C, Picataggio S: Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 1996, 62(12):4465-4470.
  • [10]Zhang M, Eddy C, Deanda K, Finkestein M, Picataggio S: Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 1995, 267(5195):240-243.
  • [11]Yanase H, Nozaki K, Okamoto K: Ethanol production from cellulosic materials by genetically engineered Zymomonas mobilis. Biotechnol Lett 2005, 27(4):259-263.
  • [12]Sprenger GA, Typas MA, Drainas C: Genetics and genetic-engineering of Zymomonas mobilis. World J Microbiol Biotechnol 1993, 9(1):17-24.
  • [13]Strzelecki AT, Goodman AE, Cail RG, Rogers PL: Behavior of the hybrid plasmid pNSW301 in Zymomonas mobilis grown in continuous culture. Plasmid 1990, 23(3):194-200.
  • [14]Strzelecki AT, Goodman AE, Rogers PL: Behavior of the IncW Plasmid Sa in Zymomonas mobilis. Plasmid 1987, 18(1):46-53.
  • [15]Jeon YJ, Svenson CJ, Rogers PL: Over-expression of xylulokinase in a xylose-metabolising recombinant strain of Zymomonas mobilis. FEMS Microbiol Lett 2005, 244(1):85-92.
  • [16]Misawa N, Okamoto T, Nakamura K, Kitamura K, Yanase H, Tonomura K: Construction of a new shuttle vector for Zymomonas mobilis. Agr Biol Chem 1986, 50(12):3201-3203.
  • [17]Tonomura K, Okamoto T, Yasui M, Yanase H: Shuttle vectors for Zymomonas mobilis. Agr Biol Chem 1986, 50(3):805-808.
  • [18]Cho DW, Rogers PL, Delaney SF: Construction of a shuttle vector for Zymomonas mobilis. Appl Microbiol Biotechnol 1989, 32(1):50-53.
  • [19]Yoon KH, Pack MY: Construction of a shuttle vector between Escherichia coli and Zymomonas anaerobia. Biotechnol Lett 1987, 9(3):163-168.
  • [20]Afendra AS, Drainas C: Expression and stability of a recombinant plasmid in Zymomonas mobilis and Escherichia coli. J Gen Microbiol 1987, 133:127-134.
  • [21]Arvanitis N, Pappas KM, Kolios G, Afendra AS, Typas MA, Drainas C: Characterization and replication properties of the Zymomonas mobilis ATCC 10988 plasmids pZMO1 and pZMO2. Plasmid 2000, 44(2):127-137.
  • [22]Reynen M, Reipen I, Sahm H, Sprenger GA: Construction of expression vectors for the gram-negative bacterium Zymomonas mobilis. Mol Gen Genet 1990, 223(2):335-341.
  • [23]Misawa N, Nakamura K: Nucleotide-sequence of the 2.7 Kb plasmid of Zymomonas mobilis ATCC10988. J Biotechnol 1989, 12(1):63-70.
  • [24]Afendra AS, Vartholomatos G, Arvanitis N, Drainas C: Characterization of the mobilization region of the Zymomonas mobilis ATCC 10988 plasmid pZMO3. Plasmid 1999, 41(1):73-77.
  • [25]Pappas KM, Kouvelis VN, Saunders E, Brettin TS, Bruce D, Detter C, Balakireva M, Han CS, Savvakis G, Kyrpides NC, Typas MA: Genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis lectotype strain ATCC 10988. J Bacteriol 2011, 193(18):5051-5052.
  • [26]Browne GM, Skotnicki ML, Goodman AE, Rogers PL: Transformation of Zymomonas mobilis by a hybrid plasmid. Plasmid 1984, 12(3):211-214.
  • [27]Delgado OD, Abate CM, Sineriz F: Construction of an integrative shuttle vector for Zymomonas mobilis. FEMS Microbiol Lett 1995, 132(1–2):23-26.
  • [28]Varsaki A, Afendra AS, Vartholomatos G, Tegos G, Drainas C: Production of ice nuclei from two recombinant Zymomonas mobilis strains employing the inaZ gene of Pseudomonas syringae. Biotechnol Lett 1998, 20(7):647-651.
  • [29]Linger JG, Adney WS, Darzins A: Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis. Appl Environ Microbiol 2010, 76(19):6360-6369.
  • [30]Douka E, Christogianni A, Koukkou AI, Afendra AS, Drainas C: Use of a green fluorescent protein gene as a reporter in Zymomonas mobilis and Halomonas elongata. FEMS Microbiol Lett 2001, 201(2):221-227.
  • [31]Misawa N, Yamano S, Ikenaga H: Production of beta-carotene in Zymomonas mobilis and Agrobacterium tumefaciens by introduction of the biosynthesis genes from Erwinia-Uredovora. Appl Environ Microbiol 1991, 57(6):1847-1849.
  • [32]Bouveret E, Brun C: Bacterial interactomes: from interactions to networks. Methods Mol Biol 2012, 804:15-33.
  • [33]Terradot L, Noirot-Gros MF: Bacterial protein interaction networks: puzzle stones from solved complex structures add to a clearer picture. Integr Biol 2011, 3(6):645-652.
  • [34]Schwikowski B, Uetz P, Fields S: A network of protein-protein interactions in yeast. Nat Biotechnol 2000, 18(12):1257-1261.
  • [35]Butland G, Peregrin-Alvarez JM, Li J, Yang WH, Yang XC, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A: Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 2005, 433(7025):531-537.
  • [36]Kouvelis VN, Saunders E, Brettin TS, Bruce D, Detter C, Han C, Typas MA, Pappas KM: Complete genome sequence of the ethanol producer Zymomonas mobilis NCIMB 11163. J Bacteriol 2009, 191(22):7140-7141.
  • [37]So LY, Watt RM: Sequencing and analysis of two cryptic plasmids from Zymomonas mobilis strain NCIMB 11163. 11th International Symposium on the Genetics of Industrial Microorganisms; Melbourne Australia 2010.
  • [38]Goodman AE, Rogers PL, Skotnicki ML: Minimal medium for isolation of auxotrophic Zymomonas mutants. Appl Environ Microbiol 1982, 44(2):496-498.
  • [39]Skotnicki ML, Tribe DE, Rogers PL: R-plasmid transfer in Zymomonas mobilis. Appl Environ Microbiol 1980, 40(1):7-12.
  • [40]Liang CC, Lee WC: Characteristics and transformation of Zymomonas mobilis with plasmid pKT230 by electroporation. Bioprocess Eng 1998, 19(2):81-85.
  • [41]Conway T, Byun MOK, Ingram LO: Expression vector for Zymomonas mobilis. Appl Environ Microbiol 1987, 53(2):235-241.
  • [42]Skulj M, Okrslar V, Jalen S, Jevsevar S, Slanc P, Strukelj B, Menart V: Improved determination of plasmid copy number using quantitative real-time PCR for monitoring fermentation processes. Microb Cell Fact 2008, 7:6. BioMed Central Full Text
  • [43]Scordaki A, Drainas C: Analysis of natural plasmids of Zymomonas mobilis ATCC 10988. J Gen Microbiol 1987, 133:2547-2556.
  • [44]Reese MG: Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome'. Comput Chem 2001, 26(1):51-56.
  • [45]Drainas C, Typas MA, Kinghorn JR: A derivative of Zymomonas mobilis ATCC 10988 with impaired ethanol-production. Biotechnol Lett 1984, 6(1):37-42.
  • [46]Weisser P, Kramer R, Sahm H, Sprenger GA: Functional expression of the glucose-transporter of Zymomonas mobilis leads to restoration of glucose and fructose uptake in Escherichia coli mutants and provides evidence for its facilitator action. J Bacteriol 1995, 177(11):3351-3354.
  • [47]Thornalley PJ: The glyoxalase system - new developments towards functional-characterization of a metabolic pathway fundamental to biological life. Biochem J 1990, 269(1):1-11.
  • [48]Harper S, Speicher DW: Purification of proteins fused to glutathione S-transferase. Methods Mol Biol 2011, 681:259-280.
  • [49]Yang S, Pelletier DA, Lu TY, Brown SD: The Zymomonas mobilis regulator Hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. BMC Microbiol 2010, 10:135. BioMed Central Full Text
  • [50]Magnuson K, Jackowski S, Rock CO, Cronan JE Jr: Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev 1993, 57(3):522-542.
  • [51]Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D: The database of interacting proteins: 2004 update. Nucl Acids Res 2004, 32(Database issue):D449-D451.
  • [52]von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B: STRING: a database of predicted functional associations between proteins. Nucl Acids Res 2003, 31(1):258-261.
  • [53]Bowers PM, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisenberg D: Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 2004, 5(5):R35. BioMed Central Full Text
  • [54]Woisetschlager M, Hogenauer G: The kdsA gene coding for 3-deoxy-D-manno-octulosonic acid 8-phosphate synthetase is part of an operon in Escherichia coli. Mol Gen Genet 1987, 207(2–3):369-373.
  • [55]Weng M, Makaroff CA, Zalkin H: Nucleotide sequence of Escherichia coli pyrG encoding CTP synthetase. J Biol Chem 1986, 261(12):5568-5574.
  • [56]Bardwell JC, Craig EA: Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous. Proc Natl Acad Sci USA 1984, 81(3):848-852.
  • [57]Zhang Y, Yu NJ, Spremulli LL: Mutational analysis of the roles of residues in Escherichia coli elongation factor Ts in the interaction with elongation factor Tu. J Biol Chem 1998, 273(8):4556-4562.
  • [58]An H, Scopes RK, Rodriguez M, Keshav KF, Ingram LO: Gel electrophoretic analysis of Zymomonas mobilis glycolytic and fermentative enzymes: identification of alcohol dehydrogenase II as a stress protein. J Bacteriol 1991, 173(19):5975-5982.
  • [59]Mejia JP, Burnett ME, An H, Barnell WO, Keshav KF, Conway T, Ingram LO: Coordination of expression of Zymomonas mobilis glycolytic and fermentative enzymes: a simple hypothesis based on mRNA stability. J Bacteriol 1992, 174(20):6438-6443.
  • [60]Yang SH, Pan CL, Tschaplinski TJ, Hurst GB, Engle NL, Zhou W, Dam P, Xu Y, Rodriguez M, Dice L, Johnson CM, Davison BH, Brown SD: Systems Biology Analysis of Zymomonas mobilis ZM4 Ethanol Stress Responses. Plos One 2013, 8(7):e68886.
  文献评价指标  
  下载次数:46次 浏览次数:21次