期刊论文详细信息
BMC Microbiology
Zearalenone lactonohydrolase activity in Hypocreales and its evolutionary relationships within the epoxide hydrolase subset of a/b-hydrolases
Jerzy Chelkowski2  Lidia Blaszczyk2  Karolina Gromadzka1  Adam Dawidziuk2  Grzegorz Koczyk2  Delfina Popiel2 
[1] Department of Chemistry, Poznań University of Life Sciences, Poznan, Poland;Institute of Plant Genetics Polish Academy of Sciences, Poznan, Poland
关键词: Homology modelling;    Epoxide hydrolase;    Mycotoxins;    Fusarium sp;    Trichoderma sp;    Clonostachys sp;    Zearalenone;    Zearalenone lactonohydrolase;   
Others  :  1141531
DOI  :  10.1186/1471-2180-14-82
 received in 2013-12-18, accepted in 2014-03-20,  发布年份 2014
PDF
【 摘 要 】

Background

Zearalenone is a mycotoxin produced by several species of Fusarium genus, most notably Fusarium graminearum and Fusarium culmorum. This resorcylic acid lactone is one of the most important toxins causing serious animal and human diseases. For over two decades it has been known that the mycoparasitic fungus Clonostachys rosea (synonym: Gliocladium roseum, teleomorph: Bionectria ochroleuca) can detoxify zearalenone, however no such attributes have been described within the Trichoderma genus.

Results

We screened for the presence of zearalenone lactonohydrolase homologs in isolates of Clonostachys and Trichoderma genera. We report first finding of expressed zearalenone lactonohydrolase in Trichoderma aggressivum. For three isolates (T. aggressivum, C. rosea and Clonostachys catenulatum isolates), we were able to reconstruct full coding sequence and verify the biotransformation ability potential. Additionally, we assessed progression of the detoxification process (in terms of transcript accumulation and mycotoxin decomposition in vitro).

In silico, search for origins of zearalenone lactonohydrolase activity in model fungal and bacterial genomes has shown that zearalenone lactonohydrolase homologs form a monophyletic fungal clade among the a/b hydrolase superfamily representatives. We corroborated the finding of functional enzyme homologs by investigating the functional sites (active site pocket with postulated, noncanonical Ser-Glu-His catalytic triad) conserved in both multiple sequence alignment and in homology-based structural models.

Conclusions

Our research shows the first finding of a functional zearalenone lactonohydrolase in mycoparasitic Trichoderma aggressivum (an activity earlier characterised in the Clonostachys rosea strains). The supporting evidence for presence and activity of functional enzyme homologs is based on the chemical analyses, gene expression patterns, homology models showing conservation of key structural features and marked reduction of zearalenone content in cultured samples (containing both medium and mycelium). Our findings also show divergent strategies of zearalenone biotransformation ability (rapid induced expression and detoxification vs. gradual detoxification) present in several members of Hypocreales order (Trichoderma and Clonostachys genera). The potential for lactonhydrolase activity directed towards zearalenone and/or similar compounds is likely ancient, with homologs present in several divergent filamentous fungi among both Sordariomycetes (Bionectria sp., Trichoderma sp., Apiospora montagnei) and Leotiomycetes (Marssonina brunnea f. sp. ‘multigermtubi’).

【 授权许可】

   
2014 Popiel et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327074549557.pdf 5171KB PDF download
Figure 7. 114KB Image download
Figure 6. 281KB Image download
Figure 5. 157KB Image download
Figure 4. 35KB Image download
Figure 3. 28KB Image download
Figure 2. 26KB Image download
Figure 1. 478KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Winssinger N, Barluenga S: Chemistry and biology of resorcylic acid lactones. Chem Commun 2007, 7:22-36.
  • [2]Zinedine A, Soriano JM, Moltó JC, Mañes J: Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 2007, 45:1-18.
  • [3]Ayed-Boussema I, Ouanes Z, Bacha H, Abid S: Toxicities induced in cultured cells exposed to zearalenone: apoptosis or mutagenesis? J Biochem Mol Toxicol 2007, 21:136-144.
  • [4]Pfohl-Leszkowicz A, Chekir-Ghedira L, Bacha H: Genotoxicity of zearalenone, an estrogenic mycotoxin: DNA adduct formation in female mouse tissues. Carcinogenesis 1995, 16:2315-2320.
  • [5]Chang K, Kurtz HJ, Mirocha CJ: Effects of the mycotoxin zearalenone on swine reproduction. Am J Vet Res 1979, 40:1260-1267.
  • [6]Gajecka M: The effect of experimental low zearalenone intoxication on ovarian follicles in pre-pubertal bitches. Pol J Vet Sci 2013, 16:45-54.
  • [7]Tiemann U, Dänicke S: In vivo and in vitro effects of the mycotoxins zearalenone and deoxynivalenol on different non-reproductive and reproductive organs in female pigs: a review. Food Addit Contam 2007, 24:306-314.
  • [8]Karlovsky P: Secondary metabolites in soil ecology. In Soil Biology. Edited by Karlowsky P. Berlin Heidelberg: Springer-Verlag; 2008:1-19.
  • [9]Utermark J, Karlovsky P: Role of zearalenone lactonase in protection of Gliocladium roseum from fungitoxic effects of the mycotoxin zearalenone. Appl Environ Microbiol 2007, 73:637-642.
  • [10]el-Sharkawy S, Abul-Hajj YJ: Microbial cleavage of zearalenone. Xenobiotica Fate Foreign Compd. Biol Syst 1988, 18:365-371.
  • [11]Takahashi-Ando N, Kimura M, Kakeya H, Osada H, Yamaguchi I: A novel lactonohydrolase responsible for the detoxification of zearalenone: enzyme purification and gene cloning. Biochem J 2002, 365:1-6.
  • [12]Vekiru E, Hametner C, Mitterbauer R, Rechthaler J, Adam G, Schatzmayr G, Krska R, Schuhmacher R: Cleavage of zearalenone by Trichosporon mycotoxinivorans to a novel nonestrogenic metabolite. Appl Environ Microbiol 2010, 76:2353-2359.
  • [13]Kriszt R, Krifaton C, Szoboszlay S, Cserháti M, Kriszt B, Kukolya J, Czéh A, Fehér-Tóth S, Török L, Szőke Z, Kovács KJ, Barna T, Ferenczi S: A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain. Plos One 2012, 7:e43608.
  • [14]Chen X, Romaine CP, Tan Q, Schlagnhaufer B, Ospina-Giraldo MD, Royse DJ, Huff DR: PCR-based genotyping of epidemic and pre epidemic Trichoderma isolates associated with green mold of Agaricus bisporus. Appl Environ Microbiol 1999, 65:2674-2678.
  • [15]Le Guilloux V, Schmidtke P, Tuffery P: Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 2009, 10:168. BioMed Central Full Text
  • [16]Bains J, Kaufman L, Farnell B, Boulanger MJ: A product analog bound form of 3-oxoadipate-enol-lactonase (PcaD) reveals a multifunctional role for the divergent cap domain. J Mol Biol 2011, 406:649-658.
  • [17]Nardini M, Dijkstra BW: Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 1999, 9:732-737.
  • [18]Li B, Yang G, Wu L, Feng Y: Role of the NC-loop in catalytic activity and stability in lipase from Fervidobacterium changbaicum. Plos One 2012, 7:e46881.
  • [19]Gromadzka K, Chelkowski J, Popiel D, Kachlicki P, Kostecki M, Golinski P: Solid substrate bioassay to evaluate the effect of Trichoderma and Clonostachys on the production of zearalenone by Fusarium species. World Mycotoxin J 2009, 2:45-52.
  • [20]Cheah E, Ashley GW, Gary J, Ollis D: Catalysis by dienelactone hydrolase: a variation on the protease mechanism. Proteins 1993, 16:64-78.
  • [21]Błaszczyk L, Popiel D, Chełkowski J, Koczyk G, Samuels GJ, Sobieralski K, Siwulski M: Species diversity of Trichoderma in Poland. J Appl Genet 2011, 52:233-243.
  • [22]Nirenberg H: Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola. Mitteilungen Aus Biol Bundesanst Für Land- Forstwirtsch Berl-Dahl 1976, 169:1-117.
  • [23]Doohan FM, Parry DW, Jenkinson P, Nicholson P: The use of species-specific PCR-based assays to analyse Fusarium ear blight of wheat. Plant Pathol 1998, 47:197-205.
  • [24]Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000, 132:365-386.
  • [25]Kibbe WA: OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 2007, 35:W43-W46.
  • [26]Chełkowski J, Golka L, Stepień Ł: Application of STS markers for leaf rust resistance genes in near-isogenic lines of spring wheat cv. Thatcher. J Appl Genet 2003, 44:323-338.
  • [27]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
  • [28]Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004, 5:113. BioMed Central Full Text
  • [29]Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW: GenBank. Nucleic Acids Res 2013, 41:D36-42.
  • [30]Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, García-Girón C, Gordon L, Hourlier T, Hunt S, Juettemann T, Kähäri AK, Keenan S, Komorowska M, Kulesha E, Longden I, Maurel T, McLaren WM, Muffato M, Nag R, Overduin B, Pignatelli M, Pritchard B, Pritchard E, et al.: Ensembl 2013. Nucleic Acids Res 2013, 41:D48-55.
  • [31]Consortium UP: Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res 2013, 41:D43-47.
  • [32]Rose PW, Bi C, Bluhm WF, Christie CH, Dimitropoulos D, Dutta S, Green RK, Goodsell DS, Prlic A, Quesada M, Quinn GB, Ramos AG, Westbrook JD, Young J, Zardecki C, Berman HM, Bourne PE: The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res 2013, 41:D475-482.
  • [33]Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA, Otillar R, Poliakov A, Ratnere I, Riley R, Smirnova T, Rokhsar D, Dubchak I: The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 2012, 40:D26-32.
  • [34]Schäffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin EV, Altschul SF: Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 2001, 29:2994-3005.
  • [35]Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinforma 2006, 22:1658-1659.
  • [36]Frickey T, Lupas A: CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinforma 2004, 20:3702-3704.
  • [37]Katoh K, Toh H: Parallelization of the MAFFT multiple sequence alignment program. Bioinforma 1899–1900, 2010:26.
  • [38]Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T: TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinforma 1972–1973, 2009:25.
  • [39]Price MN, Dehal PS, Arkin AP: FastTree 2-approximately maximum-likelihood trees for large alignments. PLOS One 2010, 5:e9490.
  • [40]Le SQ, Gascuel O: An improved general amino acid replacement matrix. Mol Biol Evol 2008, 25:1307-20.
  • [41]Gouy M, Guindon S, Gascuel O: SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010, 27:221-224.
  • [42]Darriba D, Taboada GL, Doallo R, Posada D: ProtTest 3: fast selection of best-fit models of protein evolution. Bioinforma 2011, 27:1164-1165.
  • [43]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinforma 2006, 22:2688-2690.
  • [44]Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 2001, 18:691-699.
  • [45]Lenfant N, Hotelier T, Velluet E, Bourne Y, Marchot P, Chatonnet A: ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Res 2013, 41:D423-429.
  • [46]Hildebrand A, Remmert M, Biegert A, Söding J: Fast and accurate automatic structure prediction with HHpred. Proteins 2009, 9:128-132.
  • [47]Huerta-Cepas J, Dopazo J, Gabaldón T: ETE: a python Environment for Tree Exploration. BMC Bioinformatics 2010, 11:24. BioMed Central Full Text
  • [48]Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J: Template-based protein structure modeling using the RaptorX web server. Nat Protoc 2012, 7:1511-1522.
  • [49]Biegert A, Mayer C, Remmert M, Söding J, Lupas AN: The MPI Bioinformatics Toolkit for protein sequence analysis. Nucleic Acids Res 2006, 34:335-339.
  • [50]Schrödinger L: The PyMOL Molecular Graphics System, Version 1.3r1. 2010.
  文献评价指标  
  下载次数:49次 浏览次数:20次