期刊论文详细信息
BMC Genomics
Small RNAs from plants, bacteria and fungi within the order Hypocreales are ubiquitous in human plasma
David Arthur Simpson1  Ruth Esther Hogg1  Usha Chakravarthy1  Stephen Bridgett1  Eoin Brown1  Jasenka Guduric-Fuchs1  Meabh Beatty1 
[1] Centre for Experimental Medicine, Queen’s University Belfast, Belfast, Northern Ireland, UK
关键词: Y RNA;    Blood;    Biomarker;    MicroRNA;    Next generation sequencing;    Metagenomics;    Microbiome;    Plasma;    Fungi;    Small RNAs;   
Others  :  1128424
DOI  :  10.1186/1471-2164-15-933
 received in 2014-04-25, accepted in 2014-10-16,  发布年份 2014
PDF
【 摘 要 】

Background

The human microbiome plays a significant role in maintaining normal physiology. Changes in its composition have been associated with bowel disease, metabolic disorders and atherosclerosis. Sequences of microbial origin have been observed within small RNA sequencing data obtained from blood samples. The aim of this study was to characterise the microbiome from which these sequences are derived.

Results

Abundant non-human small RNA sequences were identified in plasma and plasma exosomal samples. Assembly of these short sequences into longer contigs was the pivotal novel step in ascertaining their origin by BLAST searches. Most reads mapped to rRNA sequences. The taxonomic profiles of the microbes detected were very consistent between individuals but distinct from microbiomes reported at other sites. The majority of bacterial reads were from the phylum Proteobacteria, whilst for 5 of 6 individuals over 90% of the more abundant fungal reads were from the phylum Ascomycota; of these over 90% were from the order Hypocreales. Many contigs were from plants, presumably of dietary origin. In addition, extremely abundant small RNAs derived from human Y RNAs were detected.

Conclusions

A characteristic profile of a subset of the human microbiome can be obtained by sequencing small RNAs present in the blood. The source and functions of these molecules remain to be determined, but the specific profiles are likely to reflect health status. The potential to provide biomarkers of diet and for the diagnosis and prognosis of human disease is immense.

【 授权许可】

   
2014 Beatty et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150223043622251.pdf 3234KB PDF download
Figure 2. 89KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, et al.: A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464(7285):59-65.
  • [2]Wang ZK, Yang YS: Upper gastrointestinal microbiota and digestive diseases. World J Gastroenterol 2013, 19(10):1541-1550.
  • [3]Human Microbiome Project (HMP) http://commonfund.nih.gov/Hmp/ webcite
  • [4]Ott SJ, Kuhbacher T, Musfeldt M, Rosenstiel P, Hellmig S, Rehman A, Drews O, Weichert W, Timmis KN, Schreiber S: Fungi and inflammatory bowel diseases: Alterations of composition and diversity. Scand J Gastroenterol 2008, 43(7):831-841.
  • [5]Cho I, Blaser MJ: The human microbiome: at the interface of health and disease. Nat Rev Genet 2012, 13(4):260-270.
  • [6]Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D, Nomicos E, Park M, NIH Intramural Sequencing Center Comparative Sequencing Program, Kong HH, Segre JA: Topographic diversity of fungal and bacterial communities in human skin. Nature 2013, 498(7454):367-370.
  • [7]Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, Rosenbaum M, Gordon JI: The long-term stability of the human gut microbiota. Science 2013, 341(6141):1237439.
  • [8]Honda K, Littman DR: The microbiome in infectious disease and inflammation. Annu Rev Immunol 2012, 30:759-795.
  • [9]Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD: Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 2013, 8(6):e66019.
  • [10]Simren M, Barbara G, Flint HJ, Spiegel BM, Spiller RC, Vanner S, Verdu EF, Whorwell PJ, Zoetendal EG, Rome Foundation Committee: Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 2013, 62(1):159-176.
  • [11]Rigsbee L, Agans R, Shankar V, Kenche H, Khamis HJ, Michail S, Paliy O: Quantitative profiling of gut microbiota of children with diarrhea-predominant irritable bowel syndrome. Am J Gastroenterol 2012, 107(11):1740-1751.
  • [12]Ley RE, Turnbaugh PJ, Klein S, Gordon JI: Microbial ecology: human gut microbes associated with obesity. Nature 2006, 444(7122):1022-1023.
  • [13]Greenblum S, Turnbaugh PJ, Borenstein E: Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 2012, 109(2):594-599.
  • [14]Zhao L: The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol 2013, 11:639-647.
  • [15]Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WH, Bushman FD, Lusis AJ, Hazen SL: Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013, 19(5):576-585.
  • [16]Koren O, Spor A, Felin J, Fak F, Stombaugh J, Tremaroli V, Behre CJ, Knight R, Fagerberg B, Ley RE, Backhed F: Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A 2011, 108(Suppl 1):4592-4598.
  • [17]Backhed F: Meat-metabolizing bacteria in atherosclerosis. Nat Med 2013, 19(5):533-534.
  • [18]Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, Nielsen J, Backhed F: Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013, 498(7452):99-103.
  • [19]Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, Littman DR, Benoist C, Mathis D: Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 2010, 32(6):815-827.
  • [20]Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, Rostron T, Cerundolo V, Pamer EG, Abramson SB, Huttenhower C, Littman DR: Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2013., 2(0) doi:10.7554/eLife.01202
  • [21]Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK: Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013, 155(7):1451-1463.
  • [22]Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, Brown J, Becker CA, Fleshner PR, Dubinsky M, Rotter JI, Wang HL, McGovern DP, Brown GD, Underhill DM: Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 2012, 336(6086):1314-1317.
  • [23]Geekiyanage H, Jicha GA, Nelson PT, Chan C: Blood serum miRNA: non-invasive biomarkers for Alzheimer's disease. Exp Neurol 2012, 235(2):491-496.
  • [24]Guay C, Roggli E, Nesca V, Jacovetti C, Regazzi R: Diabetes mellitus, a microRNA-related disease? Transl Res 2011, 157(4):253-264.
  • [25]Wang K, Li H, Yuan Y, Etheridge A, Zhou Y, Huang D, Wilmes P, Galas D: The complex exogenous RNA spectra in human plasma: an interface with human gut biota? PLoS One 2012, 7(12):e51009.
  • [26]Semenov DV, Baryakin DN, Kamynina TP, Kuligina EV, Richter VA: Fragments of noncoding RNA in plasma of human blood. Ann N Y Acad Sci 2008, 1137:130-134.
  • [27]Semenov DV, Baryakin DN, Brenner EV, Kurilshikov AM, Vasiliev GV, Bryzgalov LA, Chikova ED, Filippova JA, Kuligina EV, Richter VA: Unbiased approach to profile the variety of small non-coding RNA of human blood plasma with massively parallel sequencing technology. Expert Opin Biol Ther 2012, 12(Suppl 1):S43-S51.
  • [28]Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, Liang M, Dittmar RL, Liu Y, Liang M, Kohli M, Thibodeau SN, Boardman L, Wang L: Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 2013, 14:319. BioMed Central Full Text
  • [29]Nicolas FE, Hall AE, Csorba T, Turnbull C, Dalmay T: Biogenesis of Y RNA-derived small RNAs is independent of the microRNA pathway. FEBS Lett 2012, 586(8):1226-1230.
  • [30]Leidinger P, Backes C, Deutscher S, Schmitt K, Muller SC, Frese K, Haas J, Ruprecht K, Paul F, Stahler C, Lang CJ, Meder B, Bartfai T, Meese E, Keller A: A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol 2013, 14(7):R78. BioMed Central Full Text
  • [31]Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z, Liang X, Cai X, Yin Y, Wang C, Zhang T, Zhu D, Zhang D, Xu J, Chen Q, Ba Y, Liu J, Wang Q, Chen J, Wang J, Wang M, Zhang Q, Zhang J, Zen K, Zhang CY: Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 2012, 22(1):107-126.
  • [32]Huson DH, Auch AF, Qi J, Schuster SC: MEGAN analysis of metagenomic data. Genome Res 2007, 17(3):377-386.
  • [33]Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC: Integrative analysis of environmental sequences using MEGAN4. Genome Res 2011, 21(9):1552-1560.
  • [34]O'Donnell K, Cigelnik E, Casper HH: Molecular phylogenetic, morphological, and mycotoxin data support reidentification of the Quorn mycoprotein fungus as Fusarium venenatum. Fungal Genet Biol 1998, 23(1):57-67.
  • [35]Sorefan K, Pais H, Hall AE, Kozomara A, Griffiths-Jones S, Moulton V, Dalmay T: Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence 2012, 3(1):4. -907X-3-4 BioMed Central Full Text
  • [36]Meiri E, Levy A, Benjamin H, Ben-David M, Cohen L, Dov A, Dromi N, Elyakim E, Yerushalmi N, Zion O, Lithwick-Yanai G, Sitbon E: Discovery of microRNAs and other small RNAs in solid tumors. Nucleic Acids Res 2010, 38(18):6234-6246.
  • [37]Kohn M, Pazaitis N, Huttelmaier S: Why YRNAs? About versatile RNAs and their functions. Biogeosciences 2013, 3(1):143-156.
  • [38]Christov CP, Gardiner TJ, Szuts D, Krude T: Functional requirement of noncoding Y RNAs for human chromosomal DNA replication. Mol Cell Biol 2006, 26(18):6993-7004.
  • [39]Christov CP, Trivier E, Krude T: Noncoding human Y RNAs are overexpressed in tumours and required for cell proliferation. Br J Cancer 2008, 98(5):981-988.
  • [40]Gardiner TJ, Christov CP, Langley AR, Krude T: A conserved motif of vertebrate Y RNAs essential for chromosomal DNA replication. RNA 2009, 15(7):1375-1385.
  • [41]Rutjes SA, van der Heijden A, Utz PJ, van Venrooij WJ, Pruijn GJ: Rapid nucleolytic degradation of the small cytoplasmic Y RNAs during apoptosis. J Biol Chem 1999, 274(35):24799-24807.
  • [42]Zhang Y, Wiggins BE, Lawrence C, Petrick J, Ivashuta S, Heck G: Analysis of plant-derived miRNAs in animal small RNA datasets. BMC Genomics 2012, 13:381. BioMed Central Full Text
  • [43]Howard DH: Pathogenic Fungi in Humans and Animals (Mycology). 2nd edition. Boca Raton, FL, USA: CRC Press; 2002.
  • [44]Berbee ML: The phylogeny of plant and animal pathogens in the Ascomycota. Physiol Mol Plant Pathol 2001, 59(4):165-187.
  • [45]Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, et al.: Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 2008, 26(5):553-560.
  • [46]Aouadi M, Tesz GJ, Nicoloro SM, Wang M, Chouinard M, Soto E, Ostroff GR, Czech MP: Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 2009, 458(7242):1180-1184.
  • [47]Xu J, Ganesh S, Amiji M: Non-condensing polymeric nanoparticles for targeted gene and siRNA delivery. Int J Pharm 2012, 427(1):21-34.
  • [48]Akhtar S: Oral delivery of siRNA and antisense oligonucleotides. J Drug Target 2009, 17(7):491-495.
  • [49]Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM: Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 2010, 6(1):e1000713.
  • [50]Witwer KW: XenomiRs and miRNA homeostasis in health and disease: evidence that diet and dietary miRNAs directly and indirectly influence circulating miRNA profiles. RNA Biol 2012, 9(9):1147-1154.
  • [51]Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M: Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 2011, 108(12):5003-5008.
  • [52]Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT: MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 2011, 13(4):423-433.
  • [53]Wei H, Zhou B, Zhang F, Tu Y, Hu Y, Zhang B, Zhai Q: Profiling and identification of small rDNA-derived RNAs and their potential biological functions. PLoS One 2013, 8(2):e56842.
  • [54]Witwer KW, McAlexander MA, Queen SE, Adams RJ: Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: limited evidence for general uptake of dietary plant xenomiRs. RNA Biol 2013, 10(7):1080-1086.
  • [55]Snow JW, Hale AE, Isaacs SK, Baggish AL, Chan SY: Ineffective delivery of diet-derived microRNAs to recipient animal organisms. RNA Biol 2013, 10(7):1107-1116.
  • [56]Bertheau Y, Helbling JC, Fortabat MN, Makhzami S, Sotinel I, Audeon C, Nignol AC, Kobilinsky A, Petit L, Fach P, Brunschwig P, Duhem K, Martin P: Persistence of plant DNA sequences in the blood of dairy cows fed with genetically modified (Bt176) and conventional corn silage. J Agric Food Chem 2009, 57(2):509-516.
  • [57]Trinity Genome Sequencing Laboratory http://www.medicine.tcd.ie/sequencing webcite
  • [58]Biomart for the Ensembl database http://www.ensembl.org/biomart/martview/ webcite
  • [59]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
  • [60]Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schaffer AA: Database indexing for production MegaBLAST searches. Bioinformatics 2008, 24(16):1757-1764.
  • [61]Basic Local Alignment Search Tool (BLAST) home page at NCBI http://blast.ncbi.nlm.nih.gov/ webcite
  • [62]Kosakovsky Pond S, Wadhawan S, Chiaromonte F, Ananda G, Chung WY, Taylor J, Nekrutenko A, Galaxy Team: Windshield splatter analysis with the Galaxy metagenomic pipeline. Genome Res 2009, 19(11):2144-2153.
  • [63]The Galaxy project http://usegalaxy.org webcite
  • [64]Goecks J, Nekrutenko A, Taylor J, Galaxy Team: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 2010, 11(8):R86. BioMed Central Full Text
  • [65]Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL: The Vienna RNA websuite. Nucleic Acids Res 2008, 36(Web Server issue):W70-W74.
  • [66]Vienna RNAfold webserver http://rna.tbi.univie.ac.at webcite
  • [67]Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30(14):3059-3066.
  • [68]Multiple Alignment using Fast Fourier Transform (MAFFT) http://mafft.cbrc.jp/alignment/server/ webcite
  • [69]Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R: A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 2010, 38(Web Server issue):W695-W699.
  • [70]Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011, 7:539.
  • [71]Clustal Omega on the EBI server http://www.ebi.ac.uk/Tools/msa/clustalo/ webcite
  • [72]Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ: Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25(9):1189-1191.
  • [73]Zmasek CM, Eddy SR: ATV: display and manipulation of annotated phylogenetic trees. Bioinformatics 2001, 17(4):383-384.
  • [74]Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A: NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acids Res 2010, 39(Database issue):D1005-D1010.
  文献评价指标  
  下载次数:11次 浏览次数:14次