期刊论文详细信息
BMC Research Notes
The coding region of the UFGT gene is a source of diagnostic SNP markers that allow single-locus DNA genotyping for the assessment of cultivar identity and ancestry in grapevine (Vitis vinifera L.)
Margherita Lucchin1  John W Kress2  David L Erickson2  Gianni Barcaccia1  Silvia Nicolè1 
[1] Laboratory of Plant Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis - Viale Università 16, 35020 Padova, Legnaro, Italy;Department of Botany and Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012 USA
关键词: Mislabeling;    Synonymy;    Homonymy;    Genetic identity of grapevine cultivars;    UFGT gene;    SNP-based genotypes;    Vitis vinifera L.;   
Others  :  1140600
DOI  :  10.1186/1756-0500-6-502
 received in 2013-03-26, accepted in 2013-11-23,  发布年份 2013
PDF
【 摘 要 】

Background

Vitis vinifera L. is one of society’s most important agricultural crops with a broad genetic variability. The difficulty in recognizing grapevine genotypes based on ampelographic traits and secondary metabolites prompted the development of molecular markers suitable for achieving variety genetic identification.

Findings

Here, we propose a comparison between a multi-locus barcoding approach based on six chloroplast markers and a single-copy nuclear gene sequencing method using five coding regions combined with a character-based system with the aim of reconstructing cultivar-specific haplotypes and genotypes to be exploited for the molecular characterization of 157 V. vinifera accessions. The analysis of the chloroplast target regions proved the inadequacy of the DNA barcoding approach at the subspecies level, and hence further DNA genotyping analyses were targeted on the sequences of five nuclear single-copy genes amplified across all of the accessions. The sequencing of the coding region of the UFGT nuclear gene (UDP-glucose: flavonoid 3-0-glucosyltransferase, the key enzyme for the accumulation of anthocyanins in berry skins) enabled the discovery of discriminant SNPs (1/34 bp) and the reconstruction of 130 V. vinifera distinct genotypes. Most of the genotypes proved to be cultivar-specific, and only few genotypes were shared by more, although strictly related, cultivars.

Conclusion

On the whole, this technique was successful for inferring SNP-based genotypes of grapevine accessions suitable for assessing the genetic identity and ancestry of international cultivars and also useful for corroborating some hypotheses regarding the origin of local varieties, suggesting several issues of misidentification (synonymy/homonymy).

【 授权许可】

   
2013 Nicolè et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325054357161.pdf 1103KB PDF download
Figure 4. 38KB Image download
Figure 3. 66KB Image download
Figure 2. 108KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Vivier MA, Pretorius IS: Genetically tailored grapevines for the wine industry. Trends Biotechnol 2002, 20:472-478.
  • [2]Carmona MJ, Chaib J, Martinez-Zapater JM, Thomas RM: A molecular genetic perspective of reproductive development in grapevine. J Exp Bot 2008, 59:2579-2596.
  • [3]This P, Lacombe T, Thomas RM: Historical origins and genetic diversity of wine grapes. Trends Genet 2006, 22:511-519.
  • [4]Bessis R: Evolution of the grapevine (Vitis vinifera L.) imprinted by natural and human factors. Can J Bot 2007, 85:679-690.
  • [5]Hocquigny S, Pelsy F, Dumas V, Kindt S, Heloir MC, Merdinoglu D: Diversification within grapevine cultivars goes through chimeric states. Genome 2004, 47:579-589.
  • [6]Arroyo-Garcìa R, Ruiz-Garcia L, Bolling L, Lopez A, Arnold C, Ergul A, Soylemezoglu G, Uzun HI, Cabello F, Ibanez J, Aradhya MK, Atanassov A, Atanassov I, Balint S, Cenis JL, Costantini L, Goris-Lavets S, Grando MS, By K, McGovern E, Merdinoglu D, Pejic I, Pelsy F, Primikirios N, Risovannaya V, Roubelakis-Angelakis KA, Snoussi H, Sotiri P, Tamhankar S, This P, et al.: Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol Ecol 2006, 15:3707-3714.
  • [7]Grassi F, Labra M, Imatio S, Spada A, Sgorbati S, Scienza A, Sala F: Evidence of a secondary grapevine domestication centre detected by SSR analysis. Theor Appl Genet 2003, 107:1315-1320.
  • [8]Alleweldt G, Spiegel-Roy P, Reisch B: Grapes (Vitis). In Genetic resources of temperate fruit and nut crops. Edited by Moore JN, Ballington JR. Wageningen, The Netherlands: Acta Horticulture 290; 1990:291-327.
  • [9]Schneider A: Genetic aspects in the knowledge of autochthonous wine grape cultivars (in Italian). Quad Enol Univ Torino 2006, 28:1-16.
  • [10]Gago P, Santiago J, Boso S, Alonso-Villaverde V, Grando MS, Martinez MC: Biodiversity and characterization of twenty-two Vitis vinifera L. cultivars in the Northwestern Iberian Peninsula. Am J Enol Vitic 2009, 60:293-301.
  • [11]Garcia-Beneytez E, Moreno-Arribas MV, Borrego J, Polo MC, Ibanez J: Application of a DNA analysis method for the cultivar identification of grape musts and experimental and commercial wines of Vitis vinifera L. using microsatellite markers. J Agr Food Chem 2002, 50:6090-6096.
  • [12]This P, Jung A, Boccacci P, et al.: Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 2004, 109:1448-1458.
  • [13]Cipriani G, Spadotto A, Jurman I, Di Gaspero G, Crespan M, Meneghetti S, Frare E, Vignani R, Cresti M, Morgante M, Pezzotti M, Pe E, Policriti A, Testolin R: The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor Appl Genet 2010, 121:1569-1585.
  • [14]Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater JM, Zyprian E, Moreira FM, Grando MS: Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 2013, 13:39. BioMed Central Full Text
  • [15]Ganal MW, Altmann T, Roder MS: SNP identification in crop plants. Curr Opin Plant Biol 2009, 12:211-217.
  • [16]Rafalski A: Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 2002, 5:94-100.
  • [17]Cabezas JA, Ibáñez J, Lijavetzky D, Vélez D, Bravo G, Rodríguez V, Carreño I, Jermakow AM, Carreño J, Ruiz-García L, Thomas MR, Martinez-Zapater JM: A 48 SNP set for grapevine cultivar identification. BMC Plant Biol 2011, 11:153. BioMed Central Full Text
  • [18]Jaillon O, et al.: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 2007, 449:463-467.
  • [19]Velasco R, et al.: A high quality draft consensus sequence of the genome heterozygous grapevine variety. PLoS One 2007, 2(12):e1326.
  • [20]Hebert PDN, Cywinska A, Ball SL, deWaard JR: Biological identifications through DNA barcodes. Proc R Soc Lond B 2003, 270:313-321.
  • [21]Nicolè S, Erickson DL, Ambrosi D, Bellucci E, Lucchin M, Papa R, Kress WJ, Barcaccia G: Biodiversity studies in Phaseolus spp. by DNA barcoding. Genome 2011, 54:529-545.
  • [22]DeSalle R, Egan MG, Siddall M: The unholy trinity, taxonomy, species delimitation and DNA barcoding. Philos T R Soc B 2005, 360:1905-1916.
  • [23]Newmaster SG, Fazekas AJ, Ragupathy S: DNA barcoding in land plants: evaluation of rbcL in a multigene tiered approach. Can J Bot 2006, 84:335-341.
  • [24]Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG, Husband BC, Percy DM, Hajibabaei M, Barrett SCH: Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS One 2008, 3:e2802.
  • [25]Kress WJ, Erickson DL: A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One 2007, 6:1-10.
  • [26]Salmaso M, Faes G, Segala C, Stefanini M, Salakhutdinov I, Zyprian E, Toepfer R, Grando MS, Velasco R: Genome diversity and gene haplotypes in the grapevine (Vitis vinifera L.), as revealed by single nucleotide polymorphisms. Mol Breeding 2004, 14:385-395.
  • [27]Wen J, Nie ZL, Soejima A, Meng Y: Phylogeny of Vitaceae based on the nuclear GAI1 gene sequences. Can J Bot 2007, 85:731-745.
  • [28]Duarte JM, Wall PK, Edger PP, Landherr LL, Ma H, Pires JC, Leebens-Mack J, dePamphilis CW: Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels. BMC Evol Biol 2010, 10:61. BioMed Central Full Text
  • [29]Ford CM, Boss PK, Høj PB: Cloning and characterization of Vitis vinifera UDPglucose:flavonoid 3-Oglucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. J Biol Chem 1998, 273:9224-9233.
  • [30]Pillon Y, Johansen J, Sakishima T, Chamala S, Barbazuk WB, Roalson EH, Price DK, Stacy EA: Potential use of low-copy nuclear genes in DNA barcoding: a comparison with the plastid genes in two Hawaiian plant radiations. BMC Evol Biol 2013, 13:35. BioMed Central Full Text
  • [31]Oxelman B, Lide M, Berglund D: Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Syst Evol 1997, 206:393-410.
  • [32]Shaw J, Lickey EB, Schilling EE, Small RL: Comparison of whole chloroplast genome sequences to choose non-coding regions for phylogenetic studies in angiosperms, the tortoise and the hare III. Am J Bot 2007, 94:275-288.
  • [33]Sang T, Crawford DJ, Stuessy TF: Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 1997, 84:1120-1136.
  • [34]Tate JA, Simpson BB: Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploidy species. Syst Bot 2003, 28:723-737.
  • [35]Cronn RC, Small RL, Haselkorn T, Wendel JF: Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast gene. Am J Bot 2002, 89:707-725.
  • [36]Taberlet P, Gielly L, Pautou G, Bouvet J: Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 1991, 17:1105-1110.
  • [37]Chiang TY, Schaal BA, Peng CI: Universal primers for amplification and sequencing a noncoding spacer between the atpB and rbcL genes of chloroplast DNA. Bot Bull Acad Sin 1998, 39:245-250.
  • [38]Salmaso M, Vannozzi A, Lucchin M: Chloroplast microsatellite markers to assess genetic diversity and origin of an endangered Italian grapevine collection. Am J Enol Vitic 2010, 61:551-556.
  • [39]Kimura M: A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980, 16:111-120.
  • [40]Kimura M, Crow JF: The number of alleles that can be maintained in a finite population. Genetics 1964, 49:725-738.
  • [41]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005, 14:2611-2620.
  • [42]Sarkar IN, Thornton JW, Planet PJ, Figurski DH, Schierwater B, DeSalle R: An automated phylogenetic key for classifying homeoboxes. Mol Phylogenet Evol 2002, 24:388-399.
  • [43]Martirosyan EV, Ryzhova NN, Kochieva EZ, Skryabin KG: Analysis of chloroplast rps16 intron sequences in Lemnaceae. Mol Biol 2009, 43:32-38.
  • [44]Soejima A, Wen J: Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplast markers. Am J Bot 2006, 93:278-287.
  • [45]Salmaso M, Dalla Valle R, Lucchin M: Gene pool variation and phylogenetic relationships of an indigenous northeast Italian grapevine collection revealed by nuclear and chloroplast SSRs. Genome 2008, 51:838-855.
  • [46]Wolfe KH, Li WH, Sharp PM: Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 1987, 4:9054-9058.
  • [47]Hare MP: Prospects for nuclear gene phylogeography. Trends Ecol Evol 2001, 16:707-716.
  • [48]Chase MW, Salamin N, Wilkinson M, Dunwull JM, Kesanakurthi RP, Haidar N, Savolainen V: Land plants and DNA barcodes: short-term and long-term goals. Philos Trans R Soc B 2005, 360:1889-1895.
  • [49]Pereira HS, Barao A, Delgado M, Morais-Cecilio L, Viegas W: Genomic analysis of grapevine Retrotrasposon 1 (Gret1) in Vitis vinifera. Theor Appl Genet 2005, 111:871-878.
  • [50]Furiya T, Suzuki S, Sueta T, Takayanagi T: Molecular characterization of a bud sport of Pinot Gris bearing white berries. Am J Enol Vitic 2009, 60:66-73.
  • [51]Bellin D, Peressotti E, Merdinoglu D, Wiedemann-Merdinoglu S, Adam-Blondon A-F, Cipriani G, Morgante M, Testolin R, Di Gaspero G: Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localized necrosis at the infection site. Theor Appl Genet 2009, 120:163-176.
  文献评价指标  
  下载次数:32次 浏览次数:23次