期刊论文详细信息
BMC Genetics
Body composition and gene expression QTL mapping in mice reveals imprinting and interaction effects
James M Reecy3  Jack CM Dekkers3  Richard G Tait3  Mary Sue Mayes3  Angela Cánovas2  Satyanarayana Rachagani1  Ye Cheng3 
[1] Current address: Department of Biochemistry and Molecular Biology, Department of Pathology and Microbiology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA;Genètica i Millora Animal, Institute de Recercai Tecnologia Agroalimentària, Lleida, Spain;Department of Animal Science, Iowa State University, 2255 Kildee, Ames, IA, USA
关键词: Mouse;    Interaction;    Imprinting;    Myostatin;    Body composition;    QTL mapping;    eQTL mapping;   
Others  :  1086441
DOI  :  10.1186/1471-2156-14-103
 received in 2013-07-02, accepted in 2013-10-22,  发布年份 2013
PDF
【 摘 要 】

Background

Shifts in body composition, such as accumulation of body fat, can be a symptom of many chronic human diseases; hence, efforts have been made to investigate the genetic mechanisms that underlie body composition. For example, a few quantitative trait loci (QTL) have been discovered using genome-wide association studies, which will eventually lead to the discovery of causal mutations that are associated with tissue traits. Although some body composition QTL have been identified in mice, limited research has been focused on the imprinting and interaction effects that are involved in these traits. Previously, we found that Myostatin genotype, reciprocal cross, and sex interacted with numerous chromosomal regions to affect growth traits.

Results

Here, we report on the identification of muscle, adipose, and morphometric phenotypic QTL (pQTL), translation and transcription QTL (tQTL) and expression QTL (eQTL) by applying a QTL model with additive, dominance, imprinting, and interaction effects. Using an F2 population of 1000 mice derived from the Myostatin-null C57BL/6 and M16i mouse lines, six imprinted pQTL were discovered on chromosomes 6, 9, 10, 11, and 18. We also identified two IGF1 and two Atp2a2 eQTL, which could be important trans-regulatory elements. pQTL, tQTL and eQTL that interacted with Myostatin, reciprocal cross, and sex were detected as well. Combining with the additive and dominance effect, these variants accounted for a large amount of phenotypic variation in this study.

Conclusions

Our study indicates that both imprinting and interaction effects are important components of the genetic model of body composition traits. Furthermore, the integration of eQTL and traditional QTL mapping may help to explain more phenotypic variation than either alone, thereby uncovering more molecular details of how tissue traits are regulated.

【 授权许可】

   
2013 Cheng et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116011930161.pdf 554KB PDF download
Figure 3. 22KB Image download
Figure 1. 47KB Image download
【 图 表 】

Figure 1.

Figure 3.

【 参考文献 】
  • [1]Hill WG, Goddard ME, Visscher PM: Data and theory point to mainly additive genetic variance for complex traits. PLoS Gen 2008, 4:e1000008.
  • [2]Cheverud JM, Routman EJ: Epistasis and its contribution to genetic variance components. Genetics 1995, 139:1455-1461.
  • [3]de Visser JA, Cooper TF, Elena SF: The causes of epistasis. Proc Biol Sci 2011, 278:3617-3624.
  • [4]Roff DA, Emerson K: Epistasis and dominance: evidence for differential effects in life-history versus morphological traits. Evolution 2006, 60:1981-1990.
  • [5]Silvers WK: The Coat Colors of Mice. New York: Springer Verlag; 1979.
  • [6]Wolf JB, Hager R, Cheverud JM: Genomic imprinting effects on complex traits: a phenotype-based perspective. Epigenetics 2008, 3:295-299.
  • [7]Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA: A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Gen 2007, 3:e79.
  • [8]McPherron AC, Lee SJ: Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 1997, 94:12457-12461.
  • [9]Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, Braun T, Tobin JF, Lee SJ: Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 2004, 350:2682-2688.
  • [10]Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, et al.: A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Gen 1997, 17:71-74.
  • [11]Smith JA, Lewis AM, Wiener P, Williams JL: Genetic variation in the bovine myostatin gene in UK beef cattle: allele frequencies and haplotype analysis in the South Devon. Anim Gen 2000, 31:306-309.
  • [12]Cheng Y, Rachagani S, Dekkers JC, Mayes MS, Tait R, Reecy JM: Mapping genetic loci that interact with myostatin to affect growth traits. Heredity 2011, 107:565-573.
  • [13]Varga L, Muller G, Szabo G, Pinke O, Korom E, Kovacs B, Patthy L, Soller M: Mapping modifiers affecting muscularity of the myostatin mutant (Mstn(Cmpt-dl1Abc)) compact mouse. Genetics 2003, 165:257-267.
  • [14]Varga L, Pinke O, Muller G, Kovacs B, Korom E, Szabo G, Soller M: Mapping a syntenic modifier on mouse chromosome 1 influencing the expressivity of the compact phenotype in the myostatin mutant (MstnCmpt-dl1Abc) compact mouse. Genetics 2005, 169:489-493.
  • [15]Knott SA, Marklund L, Haley CS, Andersson K, Davies W, Ellegren H, Fredholm M, Hansson I, Hoyheim B, Lundstrom K, et al.: Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 1998, 149:1069-1080.
  • [16]Almasy L, Goring HH, Diego V, Cole S, Laston S, Dyke B, Howard BV, Lee ET, Best LG, Devereux R: A novel obesity locus on chromosome 4q: the strong heart family study. Obesity (Silver Spring) 2007, 15:1741-1748.
  • [17]Diego VP, Goring HH, Cole SA, Almasy L, Dyer TD, Blangero J, Duggirala R, Laston S, Wenger C, Cantu T, et al.: Fasting insulin and obesity-related phenotypes are linked to chromosome 2p: the strong heart family study. Diabetes 2006, 55:1874-1878.
  • [18]North KE, MacCluer JW, Williams JT, Welty TK, Best LG, Lee ET, Fabsitz RR, Howard BV: Evidence for distinct genetic effects on obesity and lipid-related CVD risk factors in diabetic compared to nondiabetic American Indians: the strong heart family study. Diabetes Metab Res Rev 2003, 19:140-147.
  • [19]Williams RW SS, Lu L, Qu Y, Wang J, Manly KF, Chesler EJ, Hsu HC, Mountz JD, Threadgill DW: Genomic Analysis of Transcriptional Networks: Combining Microarrays with Complex Trait Analysis. Memphis, TN: The International Complex Trait Consortium; 2002.
  • [20]Pomp D, Allan MF, Wesolowski SR: Quantitative genomics: exploring the genetic architecture of complex trait predisposition. J Anim Sci 2004, 82(E-Suppl):E300-312.
  • [21]Jansen RC, Nap JP: Genetical genomics: the added value from segregation. Trends Genet 2001, 17:388-391.
  • [22]Brem RB, Yvert G, Clinton R, Kruglyak L: Genetic dissection of transcriptional regulation in budding yeast. Science 2002, 296:752-755.
  • [23]Yvert G, Brem RB, Whittle J, Akey JM, Foss E, Smith EN, Mackelprang R, Kruglyak L: Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Gen 2003, 35:57-64.
  • [24]Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, et al.: Genetics of gene expression surveyed in maize, mouse and man. Nature 2003, 422:297-302.
  • [25]Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V, et al.: Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Gen 2005, 37:243-253.
  • [26]Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T, Su AI, Vellenga E, Wang J, Manly KF, et al.: Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics’. Nat Gen 2005, 37:225-232.
  • [27]DeCook R, Lall S, Nettleton D, Howell SH: Genetic regulation of gene expression during shoot development in Arabidopsis. Genetics 2006, 172:1155-1164.
  • [28]Kirst M, Myburg AA, De Leon JP, Kirst ME, Scott J, Sederoff R: Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus. Plant Physiol 2004, 135:2368-2378.
  • [29]Monks SA, Leonardson A, Zhu H, Cundiff P, Pietrusiak P, Edwards S, Phillips JW, Sachs A, Schadt EE: Genetic inheritance of gene expression in human cell lines. Am J Hum Genet 2004, 75:1094-1105.
  • [30]Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, Cheung VG: Genetic analysis of genome-wide variation in human gene expression. Nature 2004, 430:743-747.
  • [31]Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick JT: Mapping determinants of human gene expression by regional and genome-wide association. Nature 2005, 437:1365-1369.
  • [32]Stranger BE, Forrest MS, Clark AG, Minichiello MJ, Deutsch S, Lyle R, Hunt S, Kahl B, Antonarakis SE, Tavare S, et al.: Genome-wide associations of gene expression variation in humans. PLoS Gen 2005, 1:e78.
  • [33]Mehrabian M, Allayee H, Stockton J, Lum PY, Drake TA, Castellani LW, Suh M, Armour C, Edwards S, Lamb J, et al.: Integrating genotypic and expression data in a segregating mouse population to identify 5-lipoxygenase as a susceptibility gene for obesity and bone traits. Nature Gen 2005, 37:1224-1233.
  • [34]Hanrahan JP, Eisen EJ, Lagates JE: Effects of population size and selection intensity of short-term response to selection for postweaning gain in mice. Genetics 1973, 73:513-530.
  • [35]Eisen EJ, Bakker H, Nagai J: Body composition and energetic efficiency in two lines of mice selected for rapid growth rate and their F1 crosses. Theor Appl Genet 1977, 49:21-34.
  • [36]Eisen EJ: Maturing patterns of organ weights in mice selected for rapid postweaning gain. Theor Appl Genet 1986, 73:148-157.
  • [37]Eisen EJ, Leatherwood JM: Effect of postweaning feed restriction on adipose cellularity and body compositon in polygenic obese mice. J Nutr 1978, 108:1663-1672.
  • [38]Eisen EJ, Leatherwood JM: Adipose cellularity and body composition in polygenic obese mice as influenced by preweaning nutrition. J Nutr 1978, 108:1652-1662.
  • [39]McPherron AC, Lee SJ: Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest 2002, 109:595-601.
  • [40]Steelman CA, Recknor JC, Nettleton D, Reecy JM: Transcriptional profiling of myostatin-knockout mice implicates Wnt signaling in postnatal skeletal muscle growth and hypertrophy. Faseb J 2006, 20:580-582.
  • [41]Leamy LJ, Klingenberg CP, Sherratt E, Wolf JB, Cheverud JM: A search for quantitative trait loci exhibiting imprinting effects on mouse mandible size and shape. Heredity 2008, 101:518-526.
  • [42]Rance KA, Fustin JM, Dalgleish G, Hambly C, Bunger L, Speakman JR: A paternally imprinted QTL for mature body mass on mouse chromosome 8. Mamm Genome 2005, 16:567-577.
  • [43]Cheverud JM, Hager R, Roseman C, Fawcett G, Wang B, Wolf JB: Genomic imprinting effects on adult body composition in mice. Proc Natl Acad Sci USA 2008, 105:4253-4258.
  • [44]Hager R, Cheverud JM, Leamy LJ, Wolf JB: Sex dependent imprinting effects on complex traits in mice. BMC Evol Biol 2008, 8:303. BioMed Central Full Text
  • [45]Karst S, Vahdati AR, Brockmann GA, Hager R: Genomic imprinting and genetic effects on muscle traits in mice. BMC Genomics 2012, 13:408. BioMed Central Full Text
  • [46]Jarvis JP, Kenney-Hunt J, Ehrich TH, Pletscher LS, Semenkovich CF, Cheverud JM: Maternal genotype affects adult offspring lipid, obesity, and diabetes phenotypes in LGXSM recombinant inbred strains. J Lipid Res 2005, 46:1692-1702.
  • [47]Casellas J, Farber CR, Gularte RJ, Haus KA, Warden CH, Medrano JF: Evidence of maternal QTL affecting growth and obesity in adult mice. Mamm Genome 2009, 20:269-280.
  • [48]de Koning DJ, Rattink AP, Harlizius B, van Arendonk JA, Brascamp EW, Groenen MA: Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc Natl Acad Sci USA 2000, 97:7947-7950.
  • [49]Dong C, Li WD, Geller F, Lei L, Li D, Gorlova OY, Hebebrand J, Amos CI, Nicholls RD, Price RA: Possible genomic imprinting of three human obesity-related genetic loci. Am J Hum Genet 2005, 76:427-437.
  • [50]Jeon JT, Carlborg O, Tornsten A, Giuffra E, Amarger V, Chardon P, Andersson-Eklund L, Andersson K, Hansson I, Lundstrom K, Andersson L: A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat Gen 1999, 21:157-158.
  • [51]Wheatcroft SB, Kearney MT, Shah AM, Ezzat VA, Miell JR, Modo M, Williams SC, Cawthorn WP, Medina-Gomez G, Vidal-Puig A, et al.: IGF-binding protein-2 protects against the development of obesity and insulin resistance. Diabetes 2007, 56:285-294.
  • [52]Salih DA, Tripathi G, Holding C, Szestak TA, Gonzalez MI, Carter EJ, Cobb LJ, Eisemann JE, Pell JM: Insulin-like growth factor-binding protein 5 (Igfbp5) compromises survival, growth, muscle development, and fertility in mice. Proc Natl Acad Sci USA 2004, 101:4314-4319.
  • [53]Bentov I, Werner H: IGF, IGF receptor and overgrowth syndromes. Pediatr Endocrinol Rev 2004, 1:352-360.
  • [54]Lichanska AM, Waters MJ: How growth hormone controls growth, obesity and sexual dimorphism. Trends Genet 2008, 24:41-47.
  • [55]Ding VD, Qureshi SA, Szalkowski D, Li Z, Biazzo-Ashnault DE, Xie D, Liu K, Jones AB, Moller DE, Zhang BB: Regulation of insulin signal transduction pathway by a small-molecule insulin receptor activator. Biochem J 2002, 367:301-306.
  • [56]Brockmann GA, Kratzsch J, Haley CS, Renne U, Schwerin M, Karle S: Single QTL effects, epistasis, and pleiotropy account for two-thirds of the phenotypic F(2) variance of growth and obesity in DU6i x DBA/2 mice. Genome Res 2000, 10:1941-1957.
  • [57]Rocha JL, Eisen EJ, Van Vleck LD, Pomp D: A large-sample QTL study in mice: I. Growth. Mamm Genome 2004, 15:83-99.
  • [58]Srivastava AK, Mohan S, Masinde GL, Yu H, Baylink DJ: Identification of quantitative trait loci that regulate obesity and serum lipid levels in MRL/MpJ x SJL/J inbred mice. J Lipid Res 2006, 47:123-133.
  • [59]Cheverud JM, Routman EJ, Duarte FA, van Swinderen B, Cothran K, Perel C: Quantitative trait loci for murine growth. Genetics 1996, 142:1305-1319.
  • [60]Vaughn TT, Pletscher LS, Peripato A, King-Ellison K, Adams E, Erikson C, Cheverud JM: Mapping quantitative trait loci for murine growth: a closer look at genetic architecture. Gen Res 1999, 74:313-322.
  • [61]Bulmer M: Galton’s law of ancestral heredity. Heredity 1998, 81(Pt 5):579-585.
  • [62]Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S, Hill JJ, Jalenak M, Kelley P, Knight A, et al.: Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun 2003, 300:965-971.
  • [63]Chakravarthy MV, Booth FW, Spangenburg EE: The molecular responses of skeletal muscle satellite cells to continuous expression of IGF-1: implications for the rescue of induced muscular atrophy in aged rats. Int J Sport Nutr Exerc Metab 2001, 11(Suppl):S44-48.
  • [64]Zaratiegui M, Castilla-Cortazar I, Garcia M, Quiroga J, Prieto J, Novo FJ: IGF1 gene transfer into skeletal muscle using recombinant adeno-associated virus in a rat model of liver cirrhosis. J Physiol Biochem 2002, 58:169-176.
  • [65]Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, Waxman DJ, Davey HW: Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci USA 1997, 94:7239-7244.
  • [66]Davey HW, Xie T, McLachlan MJ, Wilkins RJ, Waxman DJ, Grattan DR: STAT5b is required for GH-induced liver IGF-I gene expression. Endocrinology 2001, 142:3836-3841.
  • [67]Lipskaia L, Lompre AM: Alteration in temporal kinetics of Ca2+ signaling and control of growth and proliferation. Biol Cell 2004, 96:55-68.
  • [68]Bouley J, Meunier B, Chambon C, De Smet S, Hocquette JF, Picard B: Proteomic analysis of bovine skeletal muscle hypertrophy. Proteomics 2005, 5:490-500.
  • [69]McPherron AC, Lawler AM, Lee SJ: Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997, 387:83-90.
  • [70]Farahani P, Chiu S, Bowlus CL, Boffelli D, Lee E, Fisler JS, Krauss RM, Warden CH: Obesity in BSB mice is correlated with expression of genes for iron homeostasis and leptin. Obes Res 2004, 12:191-204.
  • [71]Fleck A, Munro HN: The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation. Biochim Biophys Acta 1962, 55:571-583.
  • [72]Green P, Falls K, Crooks S: Documentation for CRIMAP, Version 2.4. St. Louis: Washington University School of Medicine; 1990.
  • [73]Seaton G, Hernandez J, Grunchec JA, White I, Allen J, De Koning DJ, et al.: GridQTL: a grid portal for QTL mapping of compute intensive datasets. Belo Horizonte, Brazil: Proceedings of the 8th World Congress on Genetics Applied to Livestock Production; 13–18 August 2006; 2006.
  • [74]Churchill GA, Doerge RW: Empirical threshold values for quantitative trait mapping. Genetics 1994, 138:963-971.
  文献评价指标  
  下载次数:6次 浏览次数:32次