期刊论文详细信息
BMC Research Notes
Evolutionary patterns of RNA-based gene duplicates in Caenorhabditis nematodes coincide with their genomic features
Shunping He1  Guoxiu Wang3  Ming Zou2 
[1] The key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China;University of the Chinese Academy of Sciences, Beijing 100039, PR China;Hubei Key Laboratory of Genetic Regulation and Integrative Biology, HuaZhong Normal University, Wuhan, Hubei, China
关键词: Evolutionary pattern;    Caenorhabditis;    Chimeric gene;    Retrocopy;   
Others  :  1166028
DOI  :  10.1186/1756-0500-5-398
 received in 2012-05-18, accepted in 2012-07-18,  发布年份 2012
PDF
【 摘 要 】

Background

RNA-based gene duplicates (retrocopies) played pivotal roles in many physiological processes. Nowadays, functional retrocopies have been systematically identified in several mammals, fruit flies, plants, zebrafish and other chordates, etc. However, studies about this kind of duplication in Caenorhabditis nematodes have not been reported.

Findings

We identified 43, 48, 43, 9, and 42 retrocopies, of which 6, 15, 18, 3, and 13 formed chimeric genes in C. brenneri, C. briggsae, C. elegans, C. japonica, and C. remanei, respectively. At least 5 chimeric types exist in Caenorhabditis species, of which retrocopy recruiting both N and C terminus is the commonest one. Evidences from different analyses demonstrate many retrocopies and almost all chimeric genes may be functional in these species. About half of retrocopies in each species has coordinates in other species, and we suggest that retrocopies in closely related species may be helpful in identifying retrocopies for one certain species.

Conclusions

A number of retrocopies and chimeric genes exist in Caenorhabditis genomes, and some of them may be functional. The evolutionary patterns of these genes may correlate with their genomic features, such as the activity of retroelements, the high rate of mutation and deletion rate, and a large proportion of genes subject to trans-splicing.

【 授权许可】

   
2012 Zou et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150416035910885.pdf 380KB PDF download
Figure 1. 26KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Kaessmann H, Vinckenbosch N, Long MY: RNA-based gene duplication: mechanistic and evolutionary insights. Nat Rev Genet 2009, 10(1):19-31.
  • [2]Buzdin A, Gogvadze E, Kovalskaya E, Volchkov P, Ustyugova S, Illarionova A, Fushan A, Vinogradova T, Sverdlov E: The human genome contains many types of chimeric retrogenes generated through in vivo RNA recombination. Nucleic Acids Res 2003, 31(15):4385-4390.
  • [3]Buzdin A, Ustyugova S, Gogvadze E, Vinogradova T, Lebedev Y, Sverdlov E: A new family of chimeric retrotranscripts formed by a full copy of U6 small nuclear RNA fused to the 3 ' terminus of L1. Genomics 2002, 80(4):402-406.
  • [4]Jeffs P, Ashburner M: Processed Pseudogenes in Drosophila. Proc R Soc Lond B Biol Sci 1991, 244(1310):151-159.
  • [5]Mighell AJ, Smith NR, Robinson PA, Markham AF: Vertebrate pseudogenes. FEBS Lett 2000, 468(2–3):109-114.
  • [6]Long MY, Langley CH: Natural-Selection and the Origin of Jingwei, a Chimeric Processed Functional Gene in Drosophila. Science 1993, 260(5104):91-95.
  • [7]Mccarrey JR, Thomas K: Human Testis-Specific Pgk Gene Lacks Introns and Possesses Characteristics of a Processed Gene. Nature 1987, 326(6112):501-505.
  • [8]Wang W, Brunet FG, Nevo E, Long M: Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc Natl Acad Sci U S A 2002, 99(7):4448-4453.
  • [9]Betran E, Thornton K, Long M: Retroposed new genes out of the X in Drosophila. Genome Res 2002, 12(12):1854-1859.
  • [10]Emerson JJ, Kaessmann H, Betran E, Long MY: Extensive gene traffic on the mammalian X chromosome. Science 2004, 303(5657):537-540.
  • [11]Pan D, Zhang LQ: Burst of Young Retrogenes and Independent Retrogene Formation in Mammals. PLoS One 2009, 4(3):e5040.
  • [12]Bai Y, Casola C, Feschotte C, Betran E: Comparative genomics reveals a constant rate of origination and convergent acquisition of functional retrogenes in Drosophila. Genome Biol 2007, 8(1):R11. BioMed Central Full Text
  • [13]Wang W, Zheng HK, Fan CZ, Li J, Shi JJ, Cai ZQ, Zhang GJ, Liu DY, Zhang JG, Vang S, et al.: High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 2006, 18(8):1791-1802.
  • [14]Zhu ZL, Zhang Y, Long MY: Extensive Structural Renovation of Retrogenes in the Evolution of the Populus Genome. Plant Physiol 2009, 151(4):1943-1951.
  • [15]Zhang YJ, Wu YR, Liu YL, Han B: Computational identification of 69 retroposons in Arabidopsis. Plant Physiol 2005, 138(2):935-948.
  • [16]Fu B, Chen M, Zou M, Long M, He S: The rapid generation of chimerical genes expanding protein diversity in zebrafish. BMC Genomics 2010, 11(1):657. BioMed Central Full Text
  • [17]Chen M, Zou M, Fu BD, Li X, Vibranovski MD, Gan XN, Wang DQ, Wang W, Long MY, He SP: Evolutionary Patterns of RNA-Based Duplication in Non-Mammalian Chordates. PLoS One 2011, 6(7):e21466.
  • [18]Zhang Y, Lu SJ, Zhao SQ, Zheng XF, Long MY, Wei LP: Positive selection for the male functionality of a co-retroposed gene in the hominoids. BMC Evol Biol 2009, 9:252. BioMed Central Full Text
  • [19]Tracy C, Rio J, Motiwale M, Christensen SM, Betran E: Convergently Recruited Nuclear Transport Retrogenes Are Male Biased in Expression and Evolving Under Positive Selection in Drosophila. Genetics 2010, 184(4):1067-U1296.
  • [20]Betran E, Long M: Dntf-2r, a young Drosophila retroposed gene with specific male expression under positive Darwinian selection. Genetics 2003, 164(3):977-988.
  • [21]Babushok DV, Ohshima K, Ostertag EM, Chen XS, Wang YF, Mandal PK, Okada N, Abrams CS, Kazazian HH: A novel testis ubiquitin-binding protein gene arose by exon shuffling in hominoids. Genome Res 2007, 17(8):1129-1138.
  • [22]Ohshima K, Igarashi K: Inference for the Initial Stage of Domain Shuffling: Tracing the Evolutionary Fate of the PIPSL Retrogene in Hominoids. Mol Biol Evol 2010, 27(11):2522-2533.
  • [23]Cutter AD: Divergence times in Caenorhabditis and Drosophila inferred from direct estimates of the neutral mutation rate. Mol Biol Evol 2008, 25(4):778-786.
  • [24]Coghlan A, Wolfe KH: Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. Genome Res 2002, 12(6):857-867.
  • [25]Stein LD, Bao ZR, Blasiar D, Blumenthal T, Brent MR, Chen NS, Chinwalla A, Clarke L, Clee C, Coghlan A, et al.: The genome sequence of Caenorhabditis briggsae: A platform for comparative genomics. PLoS Biol 2003, 1(2):166.
  • [26]Gotoh O: Divergent structures of Caenorhabditis elegans cytochrome P450 genes suggest the frequent loss and gain of introns during the evolution of nematodes. Mol Biol Evol 1998, 15(11):1447-1459.
  • [27]Cho SC, Jin SW, Cohen A, Ellis RE: A phylogeny of Caenorhabditis reveals frequent loss of introns during nematode evolution. Genome Res 2004, 14(7):1207-1220.
  • [28]Kiontke K, Gavin NP, Raynes Y, Roehrig C, Piano F, Fitch DHA: Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss. Proc Natl Acad Sci U S A 2004, 101(24):9003-9008.
  • [29]Robertson HM: Two large families of chemoreceptor genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal extensive gene duplication, diversification, movement, and intron loss. Genome Res 1998, 8(5):449-463.
  • [30]Lynch M, Conery JS: The evolutionary fate and consequences of duplicate genes. Science 2000, 290(5494):1151-1155.
  • [31]Rödelsperger C, Dieterich C: More than expected: Operon turnover in three Caenorhabditis species. https://bioinformatics.cs.vt.edu/~murali/conference-fayfaars/2007-ismb-eccb/ISMBECCB07/Posters/M10Dieterich.pdf. webcite
  • [32]Blumenthal T, Evans D, Link CD, Guffanti A, Lawson D, Thierry-Mieg J, Thierry-Mieg D, Chiu WL, Duke K, Kiraly M, et al.: A global analysis of Caenorhabditis elegans operons. Nature 2002, 417(6891):851-854.
  • [33]Cutter AD, Agrawal AF: The evolutionary dynamics of operon distributions in eukaryote genomes. Genetics 2010, 185(2):685-693.
  • [34]Zorio DAR, Cheng NN, Blumenthal T, Spieth J: Operons as a common form of chromosomal organization in C. elegans. Nature 1994, 372(6503):270-272.
  • [35]Kiontke KC, Felix MA, Ailion M, Rockman MV, Braendle C, Penigault JB, Fitch DH: A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evol Biol 2011, 11:339. BioMed Central Full Text
  • [36]Eisenmann DM: Wnt signaling (June 25, 2005), WormBook, ed. The C. elegans Research Community. WormBook 2005. http://www.wormbook.org webcite
  • [37]Sudhaus W, Kiontke K: Phylogeny of Rhabditis subgenus Caenorhabditis (Rhabditidae, Nematoda). J Zool Syst Evol Res 1996, 34(4):217-233.
  • [38]Kiontke K, Hironaka M, Sudhaus W: Description of Caenorhabditis japonica n. sp (Nematoda : Rhabditida) associated with the burrower bug Parastrachia japonensis (Heteroptera : Cydnidae) in Japan. Nematology 2002, 4:933-941.
  • [39]Smit A, Hubley R, Green P: RepeatMasker Open-3.0. http://www.repeatmaskerorg 1996–2010 webcite
  • [40]SeqClean http://compbiodfciharvardedu/tgi/software webcite
  • [41]Marques AC, Dupanloup I, Vinckenbosch N, Reymond A, Kaessmann H: Emergence of young human genes after a burst of retroposition in primates. PLoS Biol 2005, 3(11):1970-1979.
  • [42]Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.
  • [43]Birney E, Durbin R: Dynamite: a flexible code generating language for dynamic programming methods used in sequence comparison. Proc Int Conf Intell Syst Mol Biol 1997, 5:56-64.
  • [44]Pearson WR: Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol 1990, 183:63-98.
  • [45]Yang ZH: PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24(8):1586-1591.
  • [46]Harris RS: Improved pairwise alignment of genomic DNA. PhD Thesis. Pennsylvania City: The Pennsylvania State University; 2007.
  • [47]Kent WJ: BLAT–the BLAST-like alignment tool. Genome Res 2002, 12(4):656-664.
  • [48]Barriere A, Yang SP, Pekarek E, Thomas CG, Haag ES, Ruvinsky I: Detecting heterozygosity in shotgun genome assemblies: Lessons from obligately outcrossing nematodes. Genome Res 2009, 19(3):470-480.
  • [49]Witherspoon DJ, Robertson HM: Neutral evolution of ten types of mariner transposons in the genomes of Caenorhabditis elegans and Caenorhabditis briggsae. J Mol Evol 2003, 56(6):751-769.
  • [50]Denver DR, Morris K, Lynch M, Thomas WK: High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature 2004, 430(7000):679-682.
  • [51]Cai JJ, Petrov DA: Relaxed Purifying Selection and Possibly High Rate of Adaptation in Primate Lineage-Specific Genes. Genome Biol Evol 2010, 2:393-409.
  • [52]Allen MA, Hillier LW, Waterston RH, Blumenthal T: A global analysis of C. elegans trans-splicing. Genome Res 2011, 21(2):255-265.
  • [53]Eisenmann DM: Wnt signaling (June 25, 2005), WormBook, ed. The C. elegans Research Community. WormBook 2005. http://www.wormbook.org webcite
  • [54]Eisenmann DM: Wnt signaling (June 25, 2005), WormBook, ed. The C. elegans Research Community. WormBook 2005. http://www.wormbook.org webcite
  • [55]Ding Y, Zhao L, Yang S, Jiang Y, Chen Y, Zhao R, Zhang Y, Zhang G, Dong Y, Yu H, et al.: A Young Drosophila Duplicate Gene Plays Essential Roles in Spermatogenesis by Regulating Several Y-Linked Male Fertility Genes. PLoS Genet 2010, 6(12):e1001255.
  • [56]Chen S, Zhang YE, Long M: New Genes in Drosophila Quickly Become Essential. Science 2010, 330(6011):1682-1685.
  • [57]Mushegian AR, Garey JR, Martin J, Liu LX: Large-scale taxonomic profiling of eukaryotic model organisms: A comparison of orthologous proteins encoded by the human, fly, nematode, and yeast genomes. Genome Res 1998, 8(6):590-598.
  文献评价指标  
  下载次数:3次 浏览次数:6次