期刊论文详细信息
BMC Complementary and Alternative Medicine
Gene expression profiling of flaxseed in mouse lung tissues-modulation of toxicologically relevant genes
Melpo Christofidou-Solomidou2  Yassine Amrani1  Louise Showe3  Sonia Tyagi2  Evguenia Arguiri2  Emily S Andersen2  Ralph Pietrofesa2  James Lee2  Stathis Kanterakis2  Floyd Dukes2 
[1] Department of Infection, Immunity and Inflammation, Leicester University, Leicester, UK;Department of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, 3615 Civic Center Boulevard, Abramson Research Building, Suite 1016C, Philadelphia, PA, 19104, USA;The Wistar Institute, Philadelphia, PA, 19104, USA
关键词: Oxidative stress;    Lung disease;    Lignans;    Genomic profiling;    Flaxseed;    CAM;    Antioxidant;   
Others  :  1232640
DOI  :  10.1186/1472-6882-12-47
 received in 2012-01-20, accepted in 2012-04-20,  发布年份 2012
PDF
【 摘 要 】

Background

Flaxseed (FS), a nutritional supplement consisting mainly of omega-3 fatty acids and lignan phenolics has potent anti-inflammatory, anti-fibrotic and antioxidant properties. The usefulness of flaxseed as an alternative and complimentary treatment option has been known since ancient times. We have shown that dietary FS supplementation ameliorates oxidative stress and inflammation in experimental models of acute and chronic lung injury in mice resulting from diverse toxicants. The development of lung tissue damage in response to direct or indirect oxidant stress is a complex process, associated with changes in expression levels of a number of genes. We therefore postulated that flaxseed might modulate gene expression of vital signaling pathways, thus interfering with the development of tissue injury.

Methods

We evaluated gene expression in lungs of flaxseed-fed (10%FS) mice under unchallenged, control conditions. We reasoned that array technology would provide a powerful tool for studying the mechanisms behind this response and aid the evaluation of dietary flaxseed intervention with a focus on toxicologically relevant molecular gene targets. Gene expression levels in lung tissues were analyzed using a large-scale array whereby 28,800 genes were evaluated.

Results

3,713 genes (12.8 %) were significantly (p < 0.05) differentially expressed, of which 2,088 had a >1.5-fold change. Genes affected by FS include those in protective pathways such as Phase I and Phase II.

Conclusions

The array studies have provided information on how FS modulates gene expression in lung and how they might be related to protective mechanisms. In addition, our study has confirmed that flaxseed is a nutritional supplement with potentially useful therapeutic applications in complementary and alternative (CAM) medicine especially in relation to treatment of lung disease.

【 授权许可】

   
2012 Dukes et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20151116010735970.pdf 1778KB PDF download
Figure 5. 88KB Image download
Figure 4. 23KB Image download
Figure 3. 98KB Image download
Figure 2. 38KB Image download
Figure 1. 25KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Bloedon LT, Szapary PO: Flaxseed and cardiovascular risk. Nutr Rev 2004, 62(1):18-27.
  • [2]Kurzer MS, Xu X: Dietary phytoestrogens. Annu Rev Nutr 1997, 17:353-381.
  • [3]Skerrett PJ, Hennekens CH: Consumption of fish and fish oils and decreased risk of stroke. Prev Cardiol 2003, 6(1):38-41.
  • [4]Simopoulos AP: Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 2002, 21(6):495-505.
  • [5]Kris-Etherton PM, Harris WS, Appel LJ: Omega-3 fatty acids and cardiovascular disease: new recommendations from the American Heart Association. Arterioscler Thromb Vasc Biol 2003, 23(2):151-152.
  • [6]Xue JY, Liu GT, Wei HL, Pan Y: Antioxidant activity of two dibenzocyclooctene lignans on the aged and ischemic brain in rats. Free Radic Biol Med 1992, 12(2):127-135.
  • [7]Prasad K: Hydroxyl radical-scavenging property of secoisolariciresinol diglucoside (SDG) isolated from flax-seed. Mol Cell Biochem 1997, 168(1–2):117-123.
  • [8]Prasad K: Antioxidant activity of secoisolariciresinol diglucoside-derived metabolites, secoisolariciresinol, enterodiol, and enterolactone. Int J Angiol 2000, 9(4):220-225.
  • [9]Kitts DD, Yuan YV, Wijewickreme AN, Thompson LU: Antioxidant activity of the flaxseed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone. Mol Cell Biochem 1999, 202(1–2):91-100.
  • [10]Lee JC, Bhora F, Sun J, Cheng G, Arguiri E, Solomides CC, Chatterjee S, Christofidou-Solomidou M: Dietary flaxseed enhances antioxidant defenses and is protective in a mouse model of lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol 2008, 294(2):L255-265.
  • [11]Lee JC, Krochak R, Blouin A, Kanterakis S, Chatterjee S, Arguiri E, Vachani A, Solomides CC, Cengel KA, Christofidou-Solomidou M: Dietary flaxseed prevents radiation-induced oxidative lung damage, inflammation and fibrosis in a mouse model of thoracic radiation injury. Cancer Biol Ther 2009, 8(1):47-53.
  • [12]Pattanaik U, Prasad K: Oxygen free radicals and endotoxic shock: effect of flaxseed. J Cardiovasc Pharmacol Ther 1998, 3(4):305-318.
  • [13]Prasad K: Secoisolariciresinol diglucoside from flaxseed delays the development of type 2 diabetes in Zucker rat. J Lab Clin Med 2001, 138(1):32-39.
  • [14]MacDonald-Wicks LK, Garg ML: Modulation of carbon tetrachloride-induced oxidative stress by dietary fat in rats(open star). J Nutr Biochem 2002, 13(2):87-95.
  • [15]Kinniry P, Amrani Y, Vachani A, Solomides CC, Arguiri E, Workman A, Carter J, Christofidou-Solomidou M: Dietary flaxseed supplementation ameliorates inflammation and oxidative tissue damage in experimental models of acute lung injury in mice. J Nutr 2006, 136(6):1545-1551.
  • [16]Razi SS, Latif MJ, Li X, Afthinos JN, Ippagunta N, Schwartz G, Sagalovich D, Belsley SJ, Connery CP, Jour G, et al.: Dietary flaxseed protects against lung ischemia reperfusion injury via inhibition of apoptosis and inflammation in a murine model. J Surg Res 2011, 171(1):e113-121.
  • [17]Christofidou-Solomidou M, Tyagi S, Tan KS, Hagan S, Pietrofesa R, Dukes F, Arguiri E, Heitjan DF, Solomides CC, Cengel KA: Dietary flaxseed administered post thoracic radiation treatment improves survival and mitigates radiation-induced pneumonopathy in mice. BMC Cancer 2011, 11(1):269. BioMed Central Full Text
  • [18]Rosner M, Hanneder M, Siegel N, Valli A, Hengstschlager M: The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins with a wide spectrum of interacting partners. Mutat Res 2008, 658(3):234-246.
  • [19]Haliga R, Mocanu V, Paduraru I, Stoica B, Oboroceanu T, Luca V: Effects of dietary flaxseed supplementation on renal oxidative stress in experimental diabetes. Rev Med Chir Soc Med Nat Iasi 2009, 113(4):1200-1204.
  • [20]Fuchs D, Piller R, Linseisen J, Daniel H, Wenzel U: The human peripheral blood mononuclear cell proteome responds to a dietary flaxseed-intervention and proteins identified suggest a protective effect in atherosclerosis. Proteomics 2007, 7(18):3278-3288.
  • [21]Velasquez MT, Bhathena SJ: Dietary phytoestrogens: a possible role in renal disease protection. Am J Kidney Dis 2001, 37(5):1056-1068.
  • [22]Truan JS, Chen JM, Thompson LU: Flaxseed oil reduces the growth of human breast tumors (MCF-7) at high levels of circulating estrogen. Mol Nutr Food Res 2010, 54(10):1414-1421.
  • [23]Hashimoto N, Takeyoshi I, Yoshinari D, Tsutsumi H, Tokumine M, Totsuka O, Sunose Y, Ohwada S, Matsumoto K, Morishita Y: Effects of a p38 mitogen-activated protein kinase inhibitor as an additive to Euro-Collins solution on reperfusion injury in canine lung transplantation1. Transplantation 2002, 74(3):320-326.
  • [24]Kobayashi M, Takeyoshi I, Yoshinari D, Matsumoto K, Morishita Y: P38 mitogen-activated protein kinase inhibition attenuates ischemia-reperfusion injury of the rat liver. Surgery 2002, 131(3):344-349.
  • [25]Ma XL, Kumar S, Gao F, Louden CS, Lopez BL, Christopher TA, Wang C, Lee JC, Feuerstein GZ, Yue TL: Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation 1999, 99(13):1685-1691.
  • [26]Tanno M, Bassi R, Gorog DA, Saurin AT, Jiang J, Heads RJ, Martin JL, Davis RJ, Flavell RA, Marber MS: Diverse mechanisms of myocardial p38 mitogen-activated protein kinase activation: evidence for MKK-independent activation by a TAB1-associated mechanism contributing to injury during myocardial ischemia. Circ Res 2003, 93(3):254-261.
  • [27]Chung KF: p38 mitogen-activated protein kinase pathways in asthma and COPD. Chest 2011, 139(6):1470-1479.
  • [28]Rahman I, MacNee W: Role of transcription factors in inflammatory lung diseases. Thorax 1998, 53(7):601-612.
  • [29]Kim JH, Suk MH, Yoon DW, Kim HY, Jung KH, Kang EH, Lee SY, Suh IB, Shin C, Shim JJ, et al.: Inflammatory and transcriptional roles of poly (ADP-ribose) polymerase in ventilator-induced lung injury. Crit Care 2008, 12(4):R108. BioMed Central Full Text
  • [30]Liaudet L, Pacher P, Mabley JG, Virag L, Soriano FG, Hasko G, Szabo C: Activation of poly(ADP-Ribose) polymerase-1 is a central mechanism of lipopolysaccharide-induced acute lung inflammation. Am J Respir Crit Care Med 2002, 165(3):372-377.
  • [31]Murakami K, Enkhbaatar P, Shimoda K, Cox RA, Burke AS, Hawkins HK, Traber LD, Schmalstieg FC, Salzman AL, Mabley JG, et al.: Inhibition of poly (ADP-ribose) polymerase attenuates acute lung injury in an ovine model of sepsis. Shock 2004, 21(2):126-133.
  • [32]Boulares AH, Zoltoski AJ, Sherif ZA, Jolly P, Massaro D, Smulson ME: Gene knockout or pharmacological inhibition of poly(ADP-ribose) polymerase-1 prevents lung inflammation in a murine model of asthma. Am J Respir Cell Mol Biol 2003, 28(3):322-329.
  • [33]Oumouna M, Datta R, Oumouna-Benachour K, Suzuki Y, Hans C, Matthews K, Fallon K, Boulares H: Poly(ADP-ribose) polymerase-1 inhibition prevents eosinophil recruitment by modulating Th2 cytokines in a murine model of allergic airway inflammation: a potential specific effect on IL-5. J Immunol 2006, 177(9):6489-6496.
  • [34]Suzuki Y, Masini E, Mazzocca C, Cuzzocrea S, Ciampa A, Suzuki H, Bani D: Inhibition of poly(ADP-ribose) polymerase prevents allergen-induced asthma-like reaction in sensitized Guinea pigs. J Pharmacol Exp Ther 2004, 311(3):1241-1248.
  • [35]Castell JV, Donato MT, Gomez-Lechon MJ: Metabolism and bioactivation of toxicants in the lung. The in vitro cellular approach. Exp Toxicol Pathol 2005, 57(Suppl 1):189-204.
  • [36]Cooper CS, Nicholson AG, Foster C, Dodson A, Edwards S, Fletcher A, Roe T, Clark J, Joshi A, Norman A, et al.: Nuclear overexpression of the E2F3 transcription factor in human lung cancer. Lung Cancer 2006, 54(2):155-162.
  • [37]Leone G, DeGregori J, Yan Z, Jakoi L, Ishida S, Williams RS, Nevins JR: E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev 1998, 12(14):2120-2130.
  • [38]Humbert PO, Verona R, Trimarchi JM, Rogers C, Dandapani S, Lees JA: E2f3 is critical for normal cellular proliferation. Genes Dev 2000, 14(6):690-703.
  • [39]Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT, Nuckolls F, Giangrande P, Wright FA, Field SJ, et al.: The E2F1-3 transcription factors are essential for cellular proliferation. Nature 2001, 414(6862):457-462.
  • [40]Feber A, Clark J, Goodwin G, Dodson AR, Smith PH, Fletcher A, Edwards S, Flohr P, Falconer A, Roe T, et al.: Amplification and overexpression of E2F3 in human bladder cancer. Oncogene 2004, 23(8):1627-1630.
  • [41]Oeggerli M, Tomovska S, Schraml P, Calvano-Forte D, Schafroth S, Simon R, Gasser T, Mihatsch MJ, Sauter G: E2F3 amplification and overexpression is associated with invasive tumor growth and rapid tumor cell proliferation in urinary bladder cancer. Oncogene 2004, 23(33):5616-5623.
  • [42]Foster CS, Falconer A, Dodson AR, Norman AR, Dennis N, Fletcher A, Southgate C, Dowe A, Dearnaley D, Jhavar S, et al.: Transcription factor E2F3 overexpressed in prostate cancer independently predicts clinical outcome. Oncogene 2004, 23(35):5871-5879.
  • [43]Chen P, Parks WC: Role of matrix metalloproteinases in epithelial migration. J Cell Biochem 2009, 108(6):1233-1243.
  • [44]Chiu PY, Mak DH, Poon MK, Ko KM: In vivo antioxidant action of a lignan-enriched extract of Schisandra fruit and an anthraquinone-containing extract of Polygonum root in comparison with schisandrin B and emodin. Planta Med 2002, 68(11):951-956.
  • [45]Perkowski S, Sun J, Singhal S, Santiago J, Leikauf GD, Albelda SM: Gene expression profiling of the early pulmonary response to hyperoxia in mice. Am J Respir Cell Mol Biol 2003, 28(6):682-696.
  • [46]Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987, 162(1):156-159.
  • [47]Ballman KV, Grill DE, Oberg AL, Therneau TM: Faster cyclic loess: normalizing RNA arrays via linear models. Bioinformatics 2004, 20(16):2778-2786.
  • [48]Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim JS, Kim CJ, Kusanovic JP, Romero R: A novel signaling pathway impact analysis. Bioinformatics 2009, 25(1):75-82.
  • [49]Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J: TM4 microarray software suite. Methods Enzymol 2006, 411:134-193.
  • [50]Zhang B, Kirov S, Snoddy J: WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Research 2005, 33:W741-W748.
  文献评价指标  
  下载次数:26次 浏览次数:4次