期刊论文详细信息
BMC Genomics
Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat
Nicholas P Harberd2  Aziz Mithani1  Carly Brown2  Caifu Jiang2  Eric J Belfield2  Lindsey J Leach2 
[1] Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan;Department of Plant Sciences, University of Oxford, Oxford, UK
关键词: Polyploidy;    Homoeologues;    Diploidization;    mRNA-Seq;    Wheat transcriptome;    Wheat;   
Others  :  1217490
DOI  :  10.1186/1471-2164-15-276
 received in 2013-11-07, accepted in 2014-04-02,  发布年份 2014
【 摘 要 】

Background

Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution ‘nullisomic-tetrasomic’ lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression.

Results

We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss.

Conclusions

We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.

【 授权许可】

   
2014 Leach et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 5. 37KB Image download
Figure 5. 97KB Image download
Figure 4. 115KB Image download
Figure 3. 156KB Image download
Figure 2. 57KB Image download
Figure 1. 138KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 5.

【 参考文献 】
  • [1]Ohno S: Evolution by Gene Duplication. New York: Springer-Verlag; 1970:160pp.
  • [2]Albertin W, Marullo P: Polyploidy in fungi: evolution after whole-genome duplication. Proc R Soc B 2012, 279:2497-2509.
  • [3]Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW: Ancestral polyploidy in seed plants and angiosperms. Nature 2011, 473:97-100.
  • [4]Otto SP, Whitton J: Polyploid incidence and evolution. Annu Rev Genet 2000, 34:401-437.
  • [5]Wolfe KH: Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2001, 2:333-341.
  • [6]Blanc G, Wolfe KH: Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 2004, 16:1667-1678.
  • [7]De Bodt S, Maere S, Van de Peer Y: Genome duplication and the origin of angiosperms. Trends Ecol Evol 2005, 20:591-597.
  • [8]Sémon M, Wolfe KH: Consequences of genome duplication. Curr Opin Genet Dev 2007, 17:505-512.
  • [9]Ha M, Kim E-D, Chen ZJ: Duplicate genes increase expression diversity in closely related species and allopolyploids. Proc Natl Acad Sci U S A 2009, 106:2295-2300.
  • [10]McClintock B: The significance of responses of the genome to challenge. Science 1984, 226:792-801.
  • [11]Chen ZJ: Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Ann Rev Plant Biol 2007, 58:377-406.
  • [12]Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM: Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 1997, 147:1381-1387.
  • [13]Ozkan H: Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 2001, 13:1735-1747.
  • [14]Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA: Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 2001, 13:1749-1759.
  • [15]Zhao N, Zhu B, Li M, Wang L, Xu L, Zhang H, Zheng S, Qi B, Han F, Liu B: Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat. Genetics 2011, 188:499-510.
  • [16]Zhang H, Bian Y, Gou X, Zhu B, Xu C, Qi B, Li N, Rustgi S, Zhou H, Han F, Jiang J, Von Wettstein D, Liu B: Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc Natl Acad Sci U S A 2013, 110:3447-3452.
  • [17]Sankoff D, Zheng C, Zhu Q: The collapse of gene complement following whole genome duplication. BMC Genomics 2010, 11:313. BioMed Central Full Text
  • [18]Thomas BC, Pedersen B, Freeling M: Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res 2006, 16:934-946.
  • [19]Woodhouse MR, Schnable JC, Pedersen BS, Lyons E, Lisch D, Subramaniam S, Freeling M: Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homologs. PLoS Biol 2010, 8:e1000409.
  • [20]Cheng F, Wu J, Fang L, Sun S, Liu B, Lin K, Bonnema G, Wang X: Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS ONE 2012, 7:e36442.
  • [21]Severin AJ, Cannon SB, Graham MM, Grant D, Shoemaker RC: Changes in twelve homoeologous genomic regions in soybean following three rounds of polyploidy. Plant Cell 2011, 23:3129-3136.
  • [22]Du J, Tian Z, Sui Y, Zhao M, Song Q, Cannon SB, Cregan P, Ma J: Pericentromeric effects shape the patterns of divergence, retention, and expression of duplicated genes in the paleopolyploid soybean. Plant Cell 2012, 24:21-32.
  • [23]Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee H-S, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA: Understanding mechanisms of novel gene expression in polyploids. Trends Genet 2003, 19:141-147.
  • [24]Adams KL, Wendel JF: Novel patterns of gene expression in polyploid plants. Trends Genet 2005, 21:539-543.
  • [25]Adams KL, Cronn R, Percifield R, Wendel JF: Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci U S A 2003, 100:4649-4654.
  • [26]Zhao J, Buchwaldt L, Rimmer SR, Brkic M, Bekkaoui D, Hegedus D: Differential expression of duplicated peroxidase genes in the allotetraploid Brassica napus. Plant Physiol Biochem 2009, 47:653-656.
  • [27]Liu Z, Adams KL: Expression partitioning between genes duplicated by polyploidy under abiotic stress and during organ development. Curr Biol 2007, 17:1669-1674.
  • [28]Hovav R, Udall JA, Chaudhary B, Rapp R, Flagel L, Wendel JF: Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant. Proc Natl Acad Sci U S A 2008, 105:6191-6195.
  • [29]Minato T, Yoshida S, Ishiguro T, Shimada E, Mizutani S, Kobayashi O, Yoshimoto H: Expression profiling of the bottom fermenting yeast Saccharomyces pastorianus orthologous genes using oligonucleotide microarrays. Yeast 2009, 26:147-165.
  • [30]Wang J, Tian L, Lee H-S, Wei NE, Jiang H, Watson B, Madlung A, Osborn TC, Doerge RW, Comai L, Chen ZJ: Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 2006, 172:507-517.
  • [31]Buggs RJA, Chamala S, Wu W, Gao L, May GD, Schnable PS, Soltis DE, Soltis PS, Barbazuk WB: Characterization of duplicate gene evolution in the recent natural allopolyploid Tragopogon miscellus by next-generation sequencing and Sequenom iPLEX MassARRAY genotyping. Mol Ecol 2010, 19(Suppl 1):132-146.
  • [32]Flagel L, Udall J, Nettleton D, Wendel JF: Duplicate gene expression in allopolyploid cotton reveals two temporally distinct phases of expression evolution. BMC Biol 2008, 6:16. BioMed Central Full Text
  • [33]Rapp RA, Udall JA, Wendel JF: Genomic expression dominance in allopolyploids. BMC Biol 2009, 7:18. BioMed Central Full Text
  • [34]Flagel LE, Wendel JF: Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol 2010, 186:184-193.
  • [35]Schnable JC, Springer NM, Freeling M: Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci U S A 2011, 108:4069-4074.
  • [36]Li L, Wang X, Stolc V, Li X, Zhang D, Su N, Tongprasit W, Li S, Cheng Z, Wang J, Deng XW: Genome-wide transcription analyses in rice using tiling microarrays. Nat Genet 2006, 38:124-129.
  • [37]Food and Agriculture Organization of the United Nations http://faostat3.fao.org/home/index.html webcite
  • [38]Dvorak J, Akhunov ED: Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 2005, 171:323-332.
  • [39]Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C: Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 2006, 48:463-474.
  • [40]Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M-C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KFX, Edwards KJ, Bevan MW, Hall N: Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 2012, 491:705-710.
  • [41]Griffiths S, Sharp R, Foote T, Bertin I, Wanous M, Reader S, Colas I, Moore G: Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 2006, 439:749-752.
  • [42]Pumphrey M, Bai J, Laudencia-Chingcuanco D, Anderson O, Gill BS: Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics 2009, 181:1147-1157.
  • [43]Akhunova AR, Matniyazov RT, Liang H, Akhunov ED: Homoeolog-specific transcriptional bias in allopolyploid wheat. BMC Genomics 2010, 11:505. BioMed Central Full Text
  • [44]Chagué V, Just J, Mestiri I, Balzergue S, Tanguy A-M, Huneau C, Huteau V, Belcram H, Coriton O, Jahier J, Chalhoub B: Genome-wide gene expression changes in genetically stable synthetic and natural wheat allohexaploids. New Phytol 2010, 187:1181-1194.
  • [45]Qi B, Huang W, Zhu B, Zhong X, Guo J, Zhao N, Xu C, Zhang H, Pang J, Han F, Liu B: Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum) lines. BMC Biol 2012, 10:3. BioMed Central Full Text
  • [46]Nomura T, Ishihara A, Yanagita RC, Endo TR, Iwamura H: Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat. Proc Natl Acad Sci U S A 2005, 102:16490-16495.
  • [47]Shitsukawa N, Tahira C, Kassai K-I, Hirabayashi C, Shimizu T, Takumi S, Mochida K, Kawaura K, Ogihara Y, Murai K: Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat. Plant Cell 2007, 19:1723-1737.
  • [48]Stamati K, Mackay I, Powell W: A quantitative genomic imbalance gene expression assay in a hexaploid species: wheat (Triticum aestivum). Genome 2009, 52:89-94.
  • [49]Smith DB, Flavell RB: Characterisation of the wheat genome by renaturation kinetics. Chromosoma 1975, 50:223-242.
  • [50]Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, Schlub S, Le Paslier M-C, Magdelenat G, Gonthier C, Couloux A, Budak H, Breen J, Pumphrey M, Liu S, Kong X, Jia J, Gut M, Brunel D, Anderson JA, Gill BS, Appels R, Keller B, Feuillet C: Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell 2010, 22:1686-1701.
  • [51]Berkman PJ, Skarshewski A, Lorenc MT, Lai K, Duran C, Ling EYS, Stiller J, Smits L, Imelfort M, Manoli S, McKenzie M, Kubaláková M, Šimková H, Batley J, Fleury D, Doležel J, Edwards D: Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotech J 2011, 9:768-775.
  • [52]Wicker T, Mayer KFX, Gundlach H, Martis M, Steuernagel B, Scholz U, Simková H, Kubaláková M, Choulet F, Taudien S, Platzer M, Feuillet C, Fahima T, Budak H, Dolezel J, Keller B, Stein N: Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Plant Cell 2011, 23:1706-1718.
  • [53]Belova T, Zhan B, Wright J, Caccamo M, Asp T, Simková H, Kent M, Bendixen C, Panitz F, Lien S, Doležel J, Olsen O-A, Sandve SR: Integration of mate pair sequences to improve shotgun assemblies of flow-sorted chromosome arms of hexaploid wheat. BMC Genomics 2013, 14:222. BioMed Central Full Text
  • [54]Sehgal SK, Li W, Rabinowicz PD, Chan A, Simková H, Doležel J, Gill BS: Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat. BMC Plant Biol 2012, 12:64. BioMed Central Full Text
  • [55]Schreiber AW, Hayden MJ, Forrest KL, Kong SL, Langridge P, Baumann U: Transcriptome-scale homoeolog-specific transcript assemblies of bread wheat. BMC Genomics 2012, 13:492. BioMed Central Full Text
  • [56]Mithani A, Belfield EJ, Brown C, Jiang C, Leach LJ, Harberd NP: HANDS: a tool for genome-wide discovery of subgenome-specific base-identity in polyploids. BMC Genomics 2013, 14:653. BioMed Central Full Text
  • [57]Sears ER: The aneuploids of common wheat. Missouri Agric Exp Stn Res Bull 1954, 572:1-58.
  • [58]Qi L, Echalier B, Friebe B, Gill BS: Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genomics 2003, 3:39-55.
  • [59]Thompson RD, Bartels D, Harberd NP, Flavell RB: Characterization of the multigene family coding for HMW glutenin subunits in wheat using cDNA clones. Theoret Appl Genet 1983, 67:87-96.
  • [60]Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP: “Green revolution” genes encode mutant gibberellin response modulators. Nature 1999, 400:256-261.
  • [61]Mochida K, Yamazaki Y, Ogihara Y: Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Genet Genomics 2003, 270:371-377.
  • [62]Leach LJ, Belfield EJ, Jiang C, Brown C, Mithani A, Harberd NP: mRNA-Seq for homoeologous gene expression analysis in hexaploid bread wheat. 2013. SRA: SRP028357http://www.ncbi.nlm.nih.gov/sra/?term=SRP028357 webcite
  • [63]Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorák J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Kantety R, La Rota CM, Munkvold JD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D, Bondareva SN, Gill KS, Mahmoud AA, Ma X-F, Miftahudin , Gustafson JP, Conley EJ, et al.: A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 2004, 168:701-712.
  • [64]Novocraft Technologies Sdn Bhd http://www.novocraft.com/main/index.php webcite
  • [65]Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP: Integrative genomics viewer. Nat Biotech 2011, 29:24-26.
  • [66]Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, Conesa A, Tárraga J, Pascual-Montano A, Nogales-Cadenas R, Santoyo J, García F, Marbà M, Montaner D, Dopazo J: Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res 2010, 38:W210-W213.
  • [67]Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P: Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci U S A 2002, 99:8133-8138.
  • [68]Akhunov ED, Akhunova AR, Linkiewicz AM, Dubcovsky J, Hummel D, Lazo G, Chao S, Anderson OD, David J, Qi L, Echalier B, Gill BS, Miftahudin , Gustafson JP, La Rota M, Sorrells ME, Zhang D, Nguyen HT, Kalavacharla V, Hossain K, Kianian SF, Peng J, Lapitan NLV, Wennerlind EJ, Nduati V, Anderson JA, Sidhu D, Gill KS, McGuire PE, Qualset CO, et al.: Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates. Proc Natl Acad Sci U S A 2003, 100:10836-10841.
  • [69]Kashkush K, Feldman M, Levy AA: Gene loss, silencing and activation in a newly synthesized Wheat Allotetraploid. Genetics 2002, 160:1651-1659.
  • [70]Bottley A, Xia GM, Koebner RMD: Homoeologous gene silencing in hexaploid wheat. Plant J 2006, 47:897-906.
  • [71]Bottley A, Koebner RMD: Variation for homoeologous gene silencing in hexaploid wheat. Plant J 2008, 56:297-302.
  • [72]He P, Friebe BR, Gill BS, Zhou J-M: Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Mol Biol 2003, 52:401-414.
  • [73]Higgins J, Magusin A, Trick M, Fraser F, Bancroft I: Use of mRNA-seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploid crop species Brassica napus. BMC Genomics 2012, 13:247. BioMed Central Full Text
  • [74]Udall JA, Swanson JM, Nettleton D, Percifield RJ, Wendel JF: A novel approach for characterizing expression levels of genes duplicated by polyploidy. Genetics 2006, 173:1823-1827.
  • [75]Samuel Yang S, Cheung F, Lee JJ, Ha M, Wei NE, Sze S-H, Stelly DM, Thaxton P, Triplett B, Town CD, Jeffrey Chen Z: Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 2006, 47:761-775.
  • [76]Chaudhary B, Flagel L, Stupar RM, Udall JA, Verma N, Springer NM, Wendel JF: Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (gossypium). Genetics 2009, 182:503-517.
  • [77]Liu S-L, Baute GJ, Adams KL: Organ and cell type-specific complementary expression patterns and regulatory neofunctionalization between duplicated genes in Arabidopsis thaliana. Genome Biol Evol 2011, 3:1419-1436.
  • [78]Feuillet C, Stein N, Rossini L, Praud S, Mayer K, Schulman A, Eversole K, Appels R: Integrating cereal genomics to support innovation in the Triticeae. Funct Integr Genomics 2012, 12:573-583.
  • [79]Srivastava HK, Sarkissian IV: Comparative studies of functions of mitochondria from a polyploid series of wheat. Genetics 1970, 66:497-503.
  • [80]Chelaifa H, Monnier A, Ainouche M: Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina x townsendii and Spartina anglica (Poaceae). New Phytol 2010, 186:161-174.
  • [81]Berkman PJ, Visendi P, Lee HC, Stiller J, Manoli S, Lorenc MT, Lai K, Batley J, Fleury D, Simková H, Kubaláková M, Weining S, Doležel J, Edwards D: Dispersion and domestication shaped the genome of bread wheat. Plant Biotech J 2013, 11:564-571.
  • [82]Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S, Comai L, Dubcovsky J: A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol 2009, 9:115. BioMed Central Full Text
  • [83]Dubcovsky J, Dvorak J: Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 2007, 316:1862-1866.
  • [84]Huang X, Madan A: CAP3: A DNA sequence assembly program. Genome Res 1999, 9:868-877.
  • [85]Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 2008, 18:1851-1858.
  • [86]Wu TD, Nacu S: Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 2010, 26:873-881.
  • [87]Degner JF, Marioni JC, Pai AA, Pickrell JK, Nkadori E, Gilad Y, Pritchard JK: Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data. Bioinformatics 2009, 25:3207-3212.
  • [88]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25:2078-2079.
  文献评价指标  
  下载次数:26次 浏览次数:7次