期刊论文详细信息
BMC Endocrine Disorders
Familial multinodular goiter syndrome with papillary thyroid carcinomas: mutational analysis of the associated genes in 5 cases from 1 Chinese family
Gang Xu5  Dandan Dong5  Jiyuan Huang4  Zhenlin Tang4  Yaming Liang1  Shaoping Deng2  Yunqiang Liu3  Wenzhong Song4  Shunyao Liao1 
[1] Diabetes & Endocrinology Center, Sichuan Academy of Medical Science, Sichuan Provincial People’s Hospital, Chengdu 610072, China;Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA;Department of Medical Genetics and Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;Department of Thyroid Disease & Nuclear Medicine, Sichuan Academy of Medical Science, Sichuan Provincial People’s Hospital, Chengdu 610072, China;Department of Pathology, Sichuan Academy of Medical Science, Sichuan Provincial People’s Hospital, Chengdu 610072, China
关键词: Risk alleles;    Genetic association;    Mutational analysis;    Multinodular goiter syndrome;    Familial papillary thyroid carcinomas;   
Others  :  1085555
DOI  :  10.1186/1472-6823-13-48
 received in 2013-06-04, accepted in 2013-10-17,  发布年份 2013
PDF
【 摘 要 】

Background

Familial papillary thyroid cancer (fPTC) is recognized as a distinct entity only recently and no fPTC predisposing genes have been identified. Several potential regions and susceptibility loci for sporadic PTC have been reported. We aimed to evaluate the role of the reported susceptibility loci and potential risk genomic region in a Chinese familial multinodular goiter (fMNG) with PTC family.

Methods

We sequenced the related risk genomic regions and analyzed the known PTC susceptibility loci in the Chinese family members who consented to join the study. These loci included (1) the point mutations of the BRAF and RET; (2) the possible susceptibility loci to sporadic PTC; and (3) the suggested potential fMNG syndrome with PTC risk region.

Results

The members showed no mutations in the common susceptible BRAF and RET genomic region, although contained several different heterozygous alleles in the RET introns. All the members were homozygous for PTC risk alleles of rs966423 (C) at chromosome 2q35, rs2910164 (C) at chromosome 5q24 and rs2439302 (G) at chromosome 8p12; while carried no risk allele of rs4733616 (T) at chromosome 8q24, rs965513 (A) or rs1867277 (A) at chromosome 9q22 which were associated with radiation-related PTC. The frequency of the risk allele of rs944289 (T) but not that of rs116909374 (T) at chromosome 14q13 was increased in the MNG or PTC family members.

Conclusions

Our work provided additional evidence to the genetic predisposition to a Chinese familial form of MNG with PTC. The family members carried quite a few risk alleles found in sporadic PTC; particularly, homozygous rs944289 (T) at chromosome 14q13 which was previously shown to be linked to a form of fMNG with PTC. Moreover, the genetic determinants of radiation-related PTC were not presented in this family.

【 授权许可】

   
2013 Liao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113174414622.pdf 1260KB PDF download
Figure 2. 184KB Image download
Figure 1. 582KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Nosé V: Familial thyroid cancer: a review. Mod Pathol 2011, 24(Suppl 2):S19-S33.
  • [2]Khan A, Smellie J, Nutting C, Harrington K, Newbold K: Familial nonmedullary thyroid cancer: a review of the genetics. Thyroid 2010, 20(7):795-801. Review
  • [3]Bonora E, Tallini G, Romeo G: Genetic predisposition to familial nonmedullary thyroid cancer: an update of molecular findings and state-of-the-Art studies. J Oncol 2010., 2010385206
  • [4]Hemminki K, Eng C, Chen B: Familial risks for nonmedullary thyroid cancer. J Clin Endocrinol Metab 2005, 90(10):5747-5753.
  • [5]Morrison PJ, Atkinson AB: Genetic aspects of familial thyroid cancer. Oncologist 2009, 14(6):571-577.
  • [6]Musholt TJ, Musholt PB, Petrich T, Oetting G, Knapp WH, Klempnauer J: Familial papillary thyroid carcinoma: genetics, criteria for diagnosis, clinical features, and surgical treatment. World J Surg 2000, 24(11):1409-1417.
  • [7]Nikiforov YE, Nikiforova MN: Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 2011, 7(10):569-580.
  • [8]Shifrin AL, Ogilvie JB, Stang MT, Fay AM, Kuo YH, Matulewicz T, Xenachis CZ, Vernick JJ: Single nucleotide polymorphisms act as modifiers and correlate with the development of medullary and simultaneous medullary/papillary thyroid carcinomas in 2 large, non-related families with the RET V804M proto-oncogene mutation. Surgery 2010, 148(6):1274-1280.
  • [9]Shifrin AL, Fay A, Kuo YH, Ogilvie J: Response to “Single nucleotide polymorphisms and development of hereditary medullary thyroid cancer in V804M RET families: disease modification or linkage disequilibrium? ”. Surgery 2012, 151(6):902-903.
  • [10]Zhang Q, Song F, Zheng H, Zhu X, Song F, Yao X, Zhang L, Chen K: Association between single-nucleotide polymorphisms of BRAF and papillary thyroid carcinoma in a Chinese population. Thyroid 2013, 23(1):38-44.
  • [11]Gudmundsson J, Sulem P, Gudbjartsson DF, Jonasson JG, Masson G, He H, Jonasdottir A, et al.: Discovery of common variants associated with low TSH levels and thyroid cancer risk. Nat Genet 2012, 44(3):319-322.
  • [12]Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A: Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA 2008, 105(20):7269-7274.
  • [13]Jazdzewski K, Liyanarachchi S, Swierniak M, Pachucki J, Ringel MD, Jarzab B, de la Chapelle A: Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci USA 2009, 106(5):1502-1505.
  • [14]Neta G, Yu CL, Brenner A, Gu F, Hutchinson A, Pfeiffer R, Sturgis EM, Xu L, Linet MS, Alexander BH, Chanock S, Sigurdson AJ: Common genetic variants in the 8q24 region and risk of papillary thyroid cancer. Laryngoscope 2012, 122(5):1040-1042.
  • [15]He H, Nagy R, Liyanarachchi S, Jiao H, Li W, Suster S, Kere J, de la Chapelle A: A susceptibility locus for papillary thyroid carcinoma on chromosome 8q24. Cancer Res 2009, 69(2):625-631.
  • [16]Jones AM, Howarth KM, Martin L, Gorman M, Mihai R, Moss L, Auton A, Lemon C, Mehanna H, Mohan H, Clarke SE, Wadsley J, Macias E, Coatesworth A, Beasley M, Roques T, Martin C, Ryan P, Gerrard G, Power D, Bremmer C, Tomlinson I, Carvajal-Carmona LG, Consortium TCUKIN: Thyroid cancer susceptibility polymorphisms: confirmation of loci on chromosomes 9q22 and 14q13, validation of a recessive 8q24 locus and failure to replicate a locus on 5q24. J Med Genet 2012, 49(3):158-163.
  • [17]Gudmundsson J, Sulem P, Gudbjartsson DF, Jonasson JG, Sigurdsson A, Bergthorsson JT, et al.: Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nat Genet 2009, 41(4):460-464.
  • [18]Matsuse M, Takahashi M, Mitsutake N, Nishihara E, Hirokawa M, Kawaguchi T, Rogounovitch T, Saenko V, Bychkov A, Suzuki K, Matsuo K, Tajima K, Miyauchi A, Yamada R, Matsuda F, Yamashita S: The FOXE1 and NKX2-1 loci are associated with susceptibility to papillary thyroid carcinoma in the Japanese population. J Med Genet 2011, 48(9):645-648.
  • [19]Takahashi M, Saenko VA, Rogounovitch TI, Kawaguchi T, Drozd VM, Takigawa-Imamura H, Akulevich NM, Ratanajaraya C, Mitsutake N, Takamura N, Danilova LI, Lushchik ML, Demidchik YE, Heath S, Yamada R, Lathrop M, Matsuda F, Yamashita S: The FOXE1 locus is a major genetic determinant for radiation-related thyroid carcinoma in Chernobyl. Hum Mol Genet 2010, 19(12):2516-2523.
  • [20]Landa I, Ruiz-Llorente S, Montero-Conde C, Inglada-Pérez L, Schiavi F, Leskelä S, et al.: The variant rs1867277 in FOXE1 gene confers thyroid cancer susceptibility through the recruitment of USF1/USF2 transcription factors. PLoS Genet 2009, 5(9):e1000637.
  • [21]Jendrzejewski J, He H, Radomska HS, Li W, Tomsic J, Liyanarachchi S, Davuluri RV, Nagy R, de la Chapelle A: The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc Natl Acad Sci USA 2012, 109(22):8646-8651.
  • [22]Malchoff CD, Sarfarazi M, Tendler B, Forouhar F, Whalen G, Joshi V, Arnold A, Malchoff DM: Papillary thyroid carcinoma associated with papillary renal neoplasia: genetic linkage analysis of a distinct heritable tumor syndrome. J Clin Endocrinol Metab 2000, 85(5):1758-1764.
  • [23]McKay JD, Lesueur F, Jonard L, Pastore A, Williamson J, Hoffman L, et al.: Localization of a susceptibility gene for familial nonmedullary thyroid carcinoma to chromosome 2q21. Am J Hum Genet 2001, 69(2):440-446.
  • [24]Cantara S, Pisu M, Frau DV, Caria P, Dettori T, Capezzone M, Capuano S, Vanni R, Pacini F: Telomere abnormalities and chromosome fragility in patients affected by familial papillary thyroid cancer. J Clin Endocrinol Metab 2012, 97(7):E1327-E1331.
  • [25]Bignell GR, Canzian F, Shayeghi M, Stark M, Shugart YY, Biggs P, et al.: Familial nontoxic multinodular thyroid goiter locus maps to chromosome 14q but does not account for familial nonmedullary thyroid cancer. Am J Hum Genet 1997, 61(5):1123-1130.
  • [26]Bakhsh A, Kirov G, Gregory JW, Williams ED, Ludgate M: A new form of familial multi-nodular goiter with progression to differentiated thyroid cancer. Endocr Relat Cancer 2006, 13(2):475-483.
  • [27]Fischer AH, Bond J, Taysavang P, Battles OE, Wynford-Thomas D: Papillary thyroid carcinoma oncogene (RET/PTC) alters the nuclear envelope and chromatin structure. Am J Pathol 1998, 153(5):1443-1450.
  • [28]Kitamura Y, Minobe K, Nakata T, Shimizu K, Tanaka S, Fujimori M, Yokoyama S, Ito K, Onda M, Emi M: Ret/PTC3 is the most frequent form of gene rearrangement in papillary thyroid carcinomas in Japan. J Hum Genet 1999, 44(2):96-102.
  文献评价指标  
  下载次数:21次 浏览次数:15次