期刊论文详细信息
BMC Medicine
Implications of stress-induced genetic variation for minimizing multidrug resistance in bacteria
Lilach Hadany1  Uri Obolski1 
[1] Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
关键词: mathematical model;    evolution;    antibiotic resistance;    HGT;    stress induced mutagenesis;   
Others  :  857375
DOI  :  10.1186/1741-7015-10-89
 received in 2012-02-27, accepted in 2012-08-13,  发布年份 2012
PDF
【 摘 要 】

Background

Antibiotic resistance in bacterial infections is a growing threat to public health. Recent evidence shows that when exposed to stressful conditions, some bacteria perform higher rates of horizontal gene transfer and mutation, and thus acquire antibiotic resistance more rapidly.

Methods

We incorporate this new notion into a mathematical model for the emergence of antibiotic multi-resistance in a hospital setting.

Results

We show that when stress has a considerable effect on genetic variation, the emergence of antibiotic resistance is dramatically affected. A strategy in which patients receive a combination of antibiotics (combining) is expected to facilitate the emergence of multi-resistant bacteria when genetic variation is stress-induced. The preference between a strategy in which one of two effective drugs is assigned randomly to each patient (mixing), and a strategy where only one drug is administered for a specific period of time (cycling) is determined by the resistance acquisition mechanisms. We discuss several features of the mechanisms by which stress affects variation and predict the conditions for success of different antibiotic treatment strategies.

Conclusions

These findings should encourage research on the mechanisms of stress-induced genetic variation and establish the importance of incorporating data about these mechanisms when considering antibiotic treatment strategies.

【 授权许可】

   
2012 Obolski and Hadany; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723080359421.pdf 2977KB PDF download
35KB Image download
38KB Image download
Figure 2. 77KB Image download
42KB Image download
30KB Image download
23KB Image download
【 图 表 】

Figure 2.

【 参考文献 】
  • [1]Bergstrom CarlT, Feldgarden Michael: The ecology and evolution of antibiotic resistant bacteria. In Evolution in health and disease. 2nd edition. Edited by Stephen C Stearns, Jacob C Koella. Oxford University Press, USA; 1999:125-138.
  • [2]Wise R, Hart T, Cars O, Streulens M, Helmuth R, Huovinen P, Sprenger M: Antimicrobial resistance. BMJ 1998, 317:609-610.
  • [3]Levy SB, Marshall B: Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 2004, 10:S122-S129.
  • [4]Kopp BJ, Nix DE, Armstrong EP: Clinical and economic analysis of methicillin-susceptible and -resistant Staphylococcus aureus infections. Ann Pharmacother 2004, 38:1377-1382.
  • [5]Hu BJ, Ye HF, Xu YC, Ni YX, Hu YJ, Yu YS, Huang ZF, Ma L: Clinical and economic outcomes associated with community-acquired intra-abdominal infections caused by extended spectrum beta-lactamase (ESBL) producing bacteria in China. Curr Med Res Opin 2010, 26:1443-1449.
  • [6]Sjolund M, Wreiber K, Andersson DI, Blaser MJ, Engstrand L: Long-term persistence of resistant enterococcus species after antibiotics to eradicate Helicobacter pylori. Ann Intern Med 2003, 139:483-487.
  • [7]Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE: Trends in antimicrobial drug development: Implications for the future. Clin Infect Dis 2004, 38:1279-1286.
  • [8]Freire-Moran L, Aronsson B, Manz C, Gyssens IC, So AD, Monnet DL, Cars O, ECDC-EMA Working Group: Critical shortage of new antibiotics in development against multidrug-resistant bacteria-time to react is now. Drug Resist Updat 2011, 14:118-124.
  • [9]Archibald L, Phillips L, Monnet D, McGowan JE, Tenover F, Gaynes R: Antimicrobial resistance in isolates from inpatients and outpatients in the United States: increasing importance of the intensive care unit. Clin Infect Dis 1997, 24:211-215.
  • [10]Bergstrom CT, Lo M, Lipsitch M: Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals. Proc Natl Acad Sci USA 2004, 101:13285-13290.
  • [11]Weinstein MC, Read JL, Mackay DN, Kresel JJ, Ashley H, Halvorsen KT, Hutchings HC: Cost-Effective choice of antimicrobial therapy for serious infections. J Gen Intern Med 1986, 1:351-363.
  • [12]Gould IM: A review of the role of antibiotic policies in the control of antibiotic resistance. J Antimicrob Chemother 1999, 43:459-465.
  • [13]Kollef MH, Fraser VJ: Antibiotic resistance in the intensive care unit. Ann Intern Med 2001, 134:298-314.
  • [14]Raymond DP, Pelletier SJ, Crabtree TD, Gleason TG, Hamm LL, Pruett TL, Sawyer RG: Impact of a rotating empiric antibiotic schedule on infectious mortality in an intensive care unit. Crit Care Med 2001, 29:1101-1108.
  • [15]Foucault C, Brouqui P: How to fight antimicrobial resistance. FEMS Immunol Med Microbiol 2007, 49:173-183.
  • [16]Martinez JA, Nicolas JM, Marco F, Horcajada JP, Garcia-Segarra G, Trilla A, Codina C, Torres A, Mensa J: Comparison of antimicrobial cycling and mixing strategies in two medical intensive care units. Crit Care Med 2006, 34:329-336.
  • [17]Masterton RG: Antibiotic cycling: more than it might seem? J Antimicrob Chemother 2005, 55:1-5.
  • [18]Lipsitch M, Levin BR: Population dynamics of tuberculosis treatment: mathematical models of the roles of non-compliance and bacterial heterogeneity in the evolution of drug resistance. Int J Tuberc Lung Dis 1998, 2:187-199.
  • [19]Bonhoeffer S, Lipsitch M, Levin BR: Evaluating treatment protocols to prevent antibiotic resistance. Proc Natl Acad Sci USA 1997, 94:12106-12111.
  • [20]Beardmore RE, Pena-Miller R: Rotating antibiotics selects optimally against antibiotic resistance, in theory. Math Biosci Eng 2010, 7:527-552.
  • [21]Foster PL: Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 2007, 42:373-397.
  • [22]Bjedov I, Tenaillon O, Gerard B, Souza V, Denamur E, Radman M, Taddei F, Matic I: Stress-induced mutagenesis in bacteria. Science 2003, 300:1404-1409.
  • [23]Claverys JP, Prudhomme M, Martin B: Induction of competence regulons as a general response to stress in gram-positive bacteria. Annu Rev Microbiol 2006, 60:451-475.
  • [24]Velkov VV: How environmental factors regulate mutagenesis and gene transfer in microorganisms. J Biosci 1999, 24:529-559.
  • [25]Varhimo E, Savijoki K, Jefremoff H, Jalava J, Sukura A, Varmanen P: Ciprofloxacin induces mutagenesis to antibiotic resistance independent of UmuC in Streptococcus uberis. Environ Microbiol 2008, 10:2179-2183.
  • [26]Alonso A, Campanario E, Martinez JL: Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. Microbiology 1999, 145:2857-2862.
  • [27]Perron GG, Hall AR, Buckling A: Hypermutability and compensatory adaptation in antibiotic-resistant bacteria. Am Nat 2010, 176:303-311.
  • [28]Kohanski MA, DePristo MA, Collins JJ: Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 2010, 37:311-320.
  • [29]Petrosino JF, Galhardo RS, Morales LD, Rosenberg SM: Stress-induced beta-lactam antibiotic resistance mutation and sequences of stationary-phase mutations in the Escherichia coli chromosome. J Bacteriol 2009, 191:5881-5889.
  • [30]Prudhomme M, Attaiech L, Sanchez G, Martin B, Claverys JP: Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 2006, 313:89-92.
  • [31]Waldor MK, Beaber JW, Hochhut B: SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 2004, 427:72-74.
  • [32]Penades JR, Ubeda C, Maiques E, Knecht E, Lasa I, Novick RP: Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol Microbiol 2005, 56:836-844.
  • [33]Hastings PJ, Rosenberg SM, Slack A: Antibiotic-induced lateral transfer of antibiotic resistance. Trends Microbiol 2004, 12:401-404.
  • [34]Hadany L, Beker T: On the evolutionary advantage of fitness-associated recombination. Genetics 2003, 165:2167-2179.
  • [35]Ram Y, Hadany L: The evolution of stress-induced hypermutation in asexual populations. Evolution 2012, 66:2315-2328.
  • [36]Hadany L, Otto SP: The evolution of condition-dependent sex in the face of high costs. Genetics 2007, 176:1713-1727.
  • [37]Kermack WO, McKendrick AG: A contribution to the mathematical theory of epidemics. Proc Roy Soc Lond A 1927, 115:700-721.
  • [38]Jernberg C, Lofmark S, Edlund C, Jansson JK: Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 2010, 156:3216-3223.
  • [39]Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, Andersson DI: Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathogens 2011, 7:e1002158.
  • [40]Levy SB, Marshall B, Schluederberg S, Rowse D, Davis J: High-frequency of antimicrobial resistance in human fecal flora. Antimicrob Agents Chemother 1988, 32:1801-1806.
  • [41]OECD Health Data 2012 - Frequently Requested Data [http://www.oecd.org/document/16/0,3343,en_2649_34631_2085200_1_1_1_1,00.html] webcite
  • [42]Paul J: What is the optimal duration of antibiotic therapy? BMJ 2006, 332:1358.
  • [43]Lipsitch M, Bergstrom CT, Levin BR: The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc Natl Acad Sci USA 2000, 97:1938-1943.
  • [44]Bassetti M, Righi E, Viscoli C: Pseudomonas aeruginosa serious infections: mono or combination antimicrobial therapy? Curr Med Chem 2008, 15:517-522.
  • [45]Kouyos RD, Abel zur Wiesch P, Bonhoeffer S: On being the right size: the impact of population size and stochastic effects on the evolution of drug resistance in hospitals and the community. PLoS Pathog 2011, 7:e1001334.
  • [46]Kouyos RD, Abel zur Wiesch P, Bonhoeffer S: Informed switching strongly decreases the prevalence of antibiotic resistance in hospital wards. PLoS Comput Biol 2011, 7:e1001094.
  • [47]Andersson DI, Levin BR: The biological cost of antibiotic resistance. Curr Opin Microbiol 1999, 2:489-493.
  • [48]Levin BR, Perrot V, Walker N: Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 2000, 154:985-997.
  • [49]Mc Mahon MAS, Blair IS, Moore JE, Mc Dowell DA: The rate of horizontal transmission of antibiotic resistance plasmids is increased in food preservation-stressed bacteria. J Appl Microbiol 2007, 103:1883-1888.
  • [50]Schafer A, Kalinowski J, Puhler A: Increased fertility of Corynebacterium glutamicun recipients in intergeneric matings with Escherichia coli after stress exposure. Appl Environ Microbiol 1994, 60:756-759.
  • [51]Lee SO, Kim NJ, Choi SH, Kim TH, Chung JW, Woo JH, Ryu J, Kim YS: Risk factors for acquisition of imipenem-resistant Acinetobacter baumannii: a case-control study. Antimicrob Agents Chemother 2004, 48:224-228.
  • [52]Ho PL, Tse WS, Tsang KWT, Kwok TK, Ng TK, Cheng VCC, Chan RMT: Risk factors for acquisition of levofloxacin-resistant Streptococcus pneumoniae: a case-control study. Clin Infect Dis 2001, 32:701-707.
  • [53]Michel JB, Yeh PJ, Chait R, Moellering RC, Kishony R: Drug interactions modulate the potential for evolution of resistance. Proc Natl Acad Sci USA 2008, 105:14918-14923.
  文献评价指标  
  下载次数:199次 浏览次数:52次