期刊论文详细信息
BMC Genomics
Genome-wide identification of heat shock proteins (Hsps) and Hsp interactors in rice: Hsp70s as a case study
Huaqin He1  Shufu Que1  Xinhai Chen1  Jian Huang1  Huan Tao1  Kuan Li1  Qi Song1  Shoukai Lin2  Yongfei Wang1 
[1] College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;Putian University, Putian, Fujian 351100, China
关键词: Identification;    Genome wide;    Heat shock proteins;    Rice (Oryza sativa L.);   
Others  :  1217254
DOI  :  10.1186/1471-2164-15-344
 received in 2013-02-05, accepted in 2014-04-28,  发布年份 2014
PDF
【 摘 要 】

Background

Heat shock proteins (Hsps) perform a fundamental role in protecting plants against abiotic stresses. Although researchers have made great efforts on the functional analysis of individual family members, Hsps have not been fully characterized in rice (Oryza sativa L.) and little is known about their interactors.

Results

In this study, we combined orthology-based approach with expression association data to screen rice Hsps for the expression patterns of which strongly correlated with that of heat responsive probe-sets. Twenty-seven Hsp candidates were identified, including 12 small Hsps, six Hsp70s, three Hsp60s, three Hsp90s, and three clpB/Hsp100s. Then, using a combination of interolog and expression profile-based methods, we inferred 430 interactors of Hsp70s in rice, and validated the interactions by co-localization and function-based methods. Subsequent analysis showed 13 interacting domains and 28 target motifs were over-represented in Hsp70s interactors. Twenty-four GO terms of biological processes and five GO terms of molecular functions were enriched in the positive interactors, whose expression levels were positively associated with Hsp70s. Hsp70s interaction network implied that Hsp70s were involved in macromolecular translocation, carbohydrate metabolism, innate immunity, photosystem II repair and regulation of kinase activities.

Conclusions

Twenty-seven Hsps in rice were identified and 430 interactors of Hsp70s were inferred and validated, then the interacting network of Hsp70s was induced and the function of Hsp70s was analyzed. Furthermore, two databases named Rice Heat Shock Proteins (RiceHsps) and Rice Gene Expression Profile (RGEP), and one online tool named Protein-Protein Interaction Predictor (PPIP), were constructed and could be accessed at http://bioinformatics.fafu.edu.cn/ webcite.

【 授权许可】

   
2014 Wang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705223652485.pdf 2508KB PDF download
Figure 9. 95KB Image download
Figure 8. 64KB Image download
Figure 7. 98KB Image download
Figure 6. 29KB Image download
Figure 5. 61KB Image download
Figure 4. 57KB Image download
Figure 3. 53KB Image download
Figure 2. 46KB Image download
Figure 1. 72KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Ahuja I, de Vos RC, Bones AM, Hall RD: Plant molecular stress responses face climate change. Trends Plant Sci 2010, 15(12):664-674.
  • [2]Timperio AM, Egidi MG, Zolla L: Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 2008, 71(4):391-411.
  • [3]Wang W, Vinocur B, Shoseyov O, Altman A: Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 2004, 9(5):244-252.
  • [4]Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A, Delseny M: Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 2001, 6(3):201-208.
  • [5]Sung DY, Vierling E, Guy CL: Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol 2001, 126(2):789-800.
  • [6]Krishna P, Gloor G: The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperones 2001, 6(3):238-246.
  • [7]Hill JE, Hemmingsen SM: Arabidopsis thaliana type I and II chaperonins. Cell Stress Chaperones 2001, 6(3):190-200.
  • [8]Scharf KD, Siddique M, Vierling E: The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 2001, 6(3):225-237.
  • [9]Lee U, Rioflorido I, Hong SW, Larkindale J, Waters ER, Vierling E: The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. Plant J 2007, 49(1):115-127.
  • [10]Lee I, Seo YS, Coltrane D, Hwang S, Oh T, Marcotte EM, Ronald PC: Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proc Natl Acad Sci U S A 2011, 108(45):18548-18553.
  • [11]Sarkar NK, Kim YK, Grover A: Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 2009, 10:393. BioMed Central Full Text
  • [12]Singh A, Singh U, Mittal D, Grover A: Genome-wide analysis of rice ClpB/HSP100, ClpC and ClpD genes. BMC Genomics 2010, 11:95. BioMed Central Full Text
  • [13]Sarkar NK, Kundnani P, Grover A: Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa). Cell Stress Chaperones 2013, 18(4):427-437.
  • [14]Jung KH, Gho HJ, Nguyen MX, Kim SR, An G: Genome-wide expression analysis of HSP70 family genes in rice and identification of a cytosolic HSP70 gene highly induced under heat stress. Funct Integr Genomics 2013, 13(3):391-402.
  • [15]Sugino M, Hibino T, Tanaka Y, Nii N, Takabe T, Takabe T: Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica acquires resistance to salt stress in transgenic tobacco plants. Plant Sci 1999, 146(2):81-88.
  • [16]Alvim FC, Carolino SM, Cascardo JC, Nunes CC, Martinez CA, Otoni WC, Fontes EP: Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol 2001, 126(3):1042-1054.
  • [17]Ono K, Hibino T, Kohinata T, Suzuki S, Tanaka Y, Nakamura T, Takabe T, Takabe T: Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances the high-temperatue tolerance of tobacco during germination and early growth. Plant Sci 2001, 160(3):455-461.
  • [18]Sato Y, Yokoya S: Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep 2008, 27(2):329-334.
  • [19]Matthews LR, Vaglio P, Reboul J, Ge H, Davis BP, Garrels J, Vincent S, Vidal M: Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or “interologs”. Genome Res 2001, 11(12):2120-2126.
  • [20]Ng SK, Zhang Z, Tan SH: Integrative approach for computationally inferring protein domain interactions. Bioinformatics 2003, 19(8):923-929.
  • [21]Yu H, Luscombe NM, Lu HX, Zhu X, Xia Y, Han JD, Bertin N, Chung S, Vidal M, Gerstein M: Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res 2004, 14(6):1107-1118.
  • [22]Wu X, Zhu L, Guo J, Zhang DY, Lin K: Prediction of yeast protein-protein interaction network: insights from the Gene Ontology and annotations. Nucleic Acids Res 2006, 34(7):2137-2150.
  • [23]Ideker T, Ozier O, Schwikowski B, Siegel AF: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 2002, 18(Suppl 1):S233-S240.
  • [24]Lyskov S, Gray JJ: The RosettaDock server for local protein-protein docking. Nucleic Acids Res 2008, 36(Web Server issue):W233-W238.
  • [25]Lehner B, Fraser AG: A first-draft human protein-interaction map. Genome Biol 2004, 5(9):R63. BioMed Central Full Text
  • [26]He F, Zhang Y, Chen H, Zhang Z, Peng YL: The prediction of protein-protein interaction networks in rice blast fungus. BMC Genomics 2008, 9:519. BioMed Central Full Text
  • [27]Wang TY, He F, Hu QW, Zhang Z: A predicted protein-protein interaction network of the filamentous fungus Neurospora crassa. Mol Biosyst 2011, 7(7):2278-2285.
  • [28]Deane CM, Salwinski L, Xenarios I, Eisenberg D: Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol Cell Proteomics 2002, 1(5):349-356.
  • [29]Han JD: Understanding biological functions through molecular networks. Cell Res 2008, 18(2):224-237.
  • [30]Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A: NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acids Res 2011, 39(Database issue):D1005-D1010.
  • [31]Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB: Missing value estimation methods for DNA microarrays. Bioinformatics 2001, 17(6):520-525.
  • [32]Benjamini Y: Opening the box of a boxplot. Am Stat 1988, 42(4):257-262.
  • [33]Frigge M, Hoaglin DC, Iglewicz B: Some implementations of the boxplot. Am Stat 1989, 43(1):50-54.
  • [34]Efron B: Bootstrap methods: another look at the jackknife. Ann Stat 1979, 7(1):1-26.
  • [35]Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Natale DA, O'Donovan C, Redaschi N, Yeh LS: The universal protein resource (UniProt). Nucleic Acids Res 2005, 33(Database issue):D154-D159.
  • [36]Sung DY, Kaplan F, Lee KJ, Guy CL: Acquired tolerance to temperature extremes. Trends Plant Sci 2003, 8(4):179-187.
  • [37]Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, Eisenberg D: DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 2002, 30(1):303-305.
  • [38]Sprinzak E, Sattath S, Margalit H: How reliable are experimental protein-protein interaction data? J Mol Biol 2003, 327(5):919-923.
  • [39]Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K: WoLF PSORT: protein localization predictor. Nucleic Acids Res 2007, 35(Web Server issue):W585-W587.
  • [40]Pang E, Lin K: Yeast protein-protein interaction binding sites: prediction from the motif-motif, motif-domain and domain-domain levels. Mol Biosyst 2010, 6(11):2164-2173.
  • [41]Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR: The Pfam protein families database. Nucleic Acids Res 2004, 32(Database issue):D138-D141.
  • [42]Fisher RA: On the interpretation of χ2 from contingency tables, and the calculation of P. J R Stat Soc 1922, 85(1):87-94.
  • [43]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 1995, 57(1):289-300.
  • [44]Gattiker A, Gasteiger E, Bairoch A: ScanProsite: a reference implementation of a PROSITE scanning tool. Appl Bioinformatics 2002, 1(2):107-108.
  • [45]Sigrist CJ, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, Hulo N: PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res 2010, 38(Database issue):D161-D166.
  • [46]Wall D, Zylicz M, Georgopoulos C: The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for lambda replication. J Biol Chem 1994, 269(7):5446-5451.
  • [47]Suh WC, Burkholder WF, Lu CZ, Zhao X, Gottesman ME, Gross CA: Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ. Proc Natl Acad Sci U S A 1998, 95(26):15223-15228.
  • [48]Horne BE, Li T, Genevaux P, Georgopoulos C, Landry SJ: The Hsp40 J-domain stimulates Hsp70 when tethered by the client to the ATPase domain. J Biol Chem 2010, 285(28):21679-21688.
  • [49]Saitoh H, Cooke CA, Burgess WH, Earnshaw WC, Dasso M: Direct and indirect association of the small GTPase ran with nuclear pore proteins and soluble transport factors: studies in Xenopus laevis egg extracts. Mol Biol Cell 1996, 7(9):1319-1334.
  • [50]Imamoto N, Shimamoto T, Takao T, Tachibana T, Kose S, Matsubae M, Sekimoto T, Shimonishi Y, Yoneda Y: In vivo evidence for involvement of a 58 kDa component of nuclear pore-targeting complex in nuclear protein import. EMBO J 1995, 14(15):3617-3626.
  • [51]Imamoto N, Tachibana T, Matsubae M, Yoneda Y: A karyophilic protein forms a stable complex with cytoplasmic components prior to nuclear pore binding. J Biol Chem 1995, 270(15):8559-8565.
  • [52]Radu A, Moore MS, Blobel G: The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 1995, 81(2):215-222.
  • [53]Mattaj IW, Englmeier L: Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 1998, 67:265-306.
  • [54]Moore MS, Blobel G: The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 1993, 365(6447):661-663.
  • [55]Shulga N, Roberts P, Gu Z, Spitz L, Tabb MM, Nomura M, Goldfarb DS: In vivo nuclear transport kinetics in Saccharomyces cerevisiae: a role for heat shock protein 70 during targeting and translocation. J Cell Biol 1996, 135(2):329-339.
  • [56]Soltys BJ, Gupta RS: Mitochondrial-matrix proteins at unexpected locations: are they exported? Trends Biochem Sci 1999, 24(5):174-177.
  • [57]Pleckaityte M, Mistiniene E, Michailoviene V, Zvirblis G: Identification and characterization of a Hsp70 (DnaK) chaperone system from Meiothermus ruber. Mol Genet Genomics 2003, 269(1):109-115.
  • [58]Chakrabortee S, Tripathi R, Watson M, Schierle GS, Kurniawan DP, Kaminski CF, Wise MJ, Tunnacliffe A: Intrinsically disordered proteins as molecular shields. Mol Biosyst 2012, 8(1):210-219.
  • [59]Luo Q, Jiang L, Chen G, Feng Y, Lv Q, Zhang C, Qu S, Zhu H, Zhou B, Xiao X: Constitutive heat shock protein 70 interacts with alpha-enolase and protects cardiomyocytes against oxidative stress. Free Radic Res 2011, 45(11–12):1355-1365.
  • [60]Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL: Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 2004, 136(4):4159-4168.
  • [61]Thao NP, Chen L, Nakashima A, Hara S, Umemura K, Takahashi A, Shirasu K, Kawasaki T, Shimamoto K: RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice. Plant Cell 2007, 19(12):4035-4045.
  • [62]Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI, Sherman MY: Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J Biol Chem 1997, 272(29):18033-18037.
  • [63]Park HS, Cho SG, Kim CK, Hwang HS, Noh KT, Kim MS, Huh SH, Kim MJ, Ryoo K, Kim EK, Kang WJ, Lee JS, Seo JS, Ko YG, Kim S, Choi EJ: Heat shock protein hsp72 is a negative regulator of apoptosis signal-regulating kinase 1. Mol Cell Biol 2002, 22(22):7721-7730.
  • [64]Hwang JR, Zhang C, Patterson C: C-terminus of heat shock protein 70-interacting protein facilitates degradation of apoptosis signal-regulating kinase 1 and inhibits apoptosis signal-regulating kinase 1-dependent apoptosis. Cell Stress Chaperones 2005, 10(2):147-156.
  • [65]Shirasu K: The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu Rev Plant Biol 2009, 60:139-164.
  • [66]Kawano Y, Chen L, Shimamoto K: The function of Rac small GTPase and associated proteins in rice innate immunity. Rice 2010, 3(2–3):112-121.
  • [67]Catlett MG, Kaplan KB: Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p. J Biol Chem 2006, 281(44):33739-33748.
  • [68]Cheng YT, Li Y, Huang S, Huang Y, Dong X, Zhang Y, Li X: Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation. Proc Natl Acad Sci U S A 2011, 108(35):14694-14699.
  • [69]Shen G, Adam Z, Zhang H: The E3 ligase AtCHIP ubiquitylates FtsH1, a component of the chloroplast FtsH protease, and affects protein degradation in chloroplasts. Plant J 2007, 52(2):309-321.
  • [70]Lindahl M, Spetea C, Hundal T, Oppenheim AB, Adam Z, Andersson B: The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem II D1 protein. Plant Cell 2000, 12(3):419-431.
  • [71]Bailey S, Thompson E, Nixon PJ, Horton P, Mullineaux CW, Robinson C, Mann NH: A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. J Biol Chem 2002, 277(3):2006-2011.
  • [72]Sakamoto W, Tamura T, Hanba-Tomita Y, Murata M, Sodmergen : The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles. Genes Cells 2002, 7(8):769-780.
  • [73]Yokthongwattana K, Chrost B, Behrman S, Casper-Lindley C, Melis A: Photosystem II damage and repair cycle in the green alga Dunaliella salina: involvement of a chloroplast-localized HSP70. Plant Cell Physiol 2001, 42(12):1389-1397.
  • [74]Gao T, Newton AC: The turn motif is a phosphorylation switch that regulates the binding of Hsp70 to protein kinase C. J Biol Chem 2002, 277(35):31585-31592.
  • [75]Marteil G, Gagne JP, Borsuk E, Richard-Parpaillon L, Poirier GG, Kubiak JZ: Proteomics reveals a switch in CDK1-associated proteins upon M-phase exit during the Xenopus laevis oocyte to embryo transition. Int J Biochem Cell Biol 2012, 44(1):53-64.
  • [76]Kumar M, Rawat P, Khan SZ, Dhamija N, Chaudhary P, Ravi DS, Mitra D: Reciprocal regulation of human immunodeficiency virus-1 gene expression and replication by heat shock proteins 40 and 70. J Mol Biol 2011, 410(5):944-958.
  • [77]Ding XZ, Tsokos GC, Kiang JG: Overexpression of HSP-70 inhibits the phosphorylation of HSF1 by activating protein phosphatase and inhibiting protein kinase C activity. FASEB J 1998, 12(6):451-459.
  • [78]Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR: The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 2007, 35(Database issue):D883-D887.
  • [79]Hastie TTR, Narasimhan B, Chu G: Impute: imputation for microarray data. R Package Version 1220 2009. http://CRAN.R-project.org/package=impute webcite
  • [80]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5(10):R80. BioMed Central Full Text
  • [81]Cleveland W: LOWESS: a program for smoothing scatterplots by robust locally weighted regression. Am Stat 1981, 35:1.
  • [82]Ihaka R, Gentleman R: R: a language for data analysis and graphics. J Comput Graph Stat 1996, 5(3):299-314.
  • [83]Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 2002, 30(4):e15.
  • [84]Smyth GK, Speed T: Normalization of cDNA microarray data. Methods 2003, 31(4):265-273.
  • [85]Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL: BLAST+: architecture and applications. BMC Bioinformatics 2009, 10:421. BioMed Central Full Text
  • [86]Du Z, Zhou X, Ling Y, Zhang Z, Su Z: agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 2010, 38(Web Server issue):W64-W70.
  • [87]Eddy SR: A new generation of homology search tools based on probabilistic inference. Genome Inform 2009, 23(1):205-211.
  • [88]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13(11):2498-2504.
  文献评价指标  
  下载次数:48次 浏览次数:6次