期刊论文详细信息
BMC Genomics
Metatranscriptomic profiles of Eastern subterranean termites, Reticulitermes flavipes (Kollar) fed on second generation feedstocks
Michael E Scharf2  Jyothi Thimmapuram1  Ketaki P Bhide1  Jacob T Shreve1  Swapna Priya Rajarapu2 
[1] Bioinformatics Core, Purdue University, West Lafayette 47907-2089, Indiana;Department of Entomology, Purdue University, West Lafayette 47907-2089, Indiana
关键词: Protists;    RNA-seq;    Lignocellulase;    Soybean residue;    Corn stover;    Termite;   
Others  :  1177256
DOI  :  10.1186/s12864-015-1502-8
 received in 2015-02-23, accepted in 2015-03-27,  发布年份 2015
PDF
【 摘 要 】

Background

Second generation lignocellulosic feedstocks are being considered as an alternative to first generation biofuels that are derived from grain starches and sugars. However, the current pre-treatment methods for second generation biofuel production are inefficient and expensive due to the recalcitrant nature of lignocellulose. In this study, we used the lower termite Reticulitermes flavipes (Kollar), as a model to identify potential pretreatment genes/enzymes specifically adapted for use against agricultural feedstocks.

Results

Metatranscriptomic profiling was performed on worker termite guts after feeding on corn stover (CS), soybean residue (SR), or 98% pure cellulose (paper) to identify (i) microbial community, (ii) pathway level and (iii) gene-level responses. Microbial community profiles after CS and SR feeding were different from the paper feeding profile, and protist symbiont abundance decreased significantly in termites feeding on SR and CS relative to paper. Functional profiles after CS feeding were similar to paper and SR; whereas paper and SR showed different profiles. Amino acid and carbohydrate metabolism pathways were downregulated in termites feeding on SR relative to paper and CS. Gene expression analyses showed more significant down regulation of genes after SR feeding relative to paper and CS. Stereotypical lignocellulase genes/enzymes were not differentially expressed, but rather were among the most abundant/constitutively-expressed genes.

Conclusions

These results suggest that the effect of CS and SR feeding on termite gut lignocellulase composition is minimal and thus, the most abundantly expressed enzymes appear to encode the best candidate catalysts for use in saccharification of these and related second-generation feedstocks. Further, based on these findings we hypothesize that the most abundantly expressed lignocellulases, rather than those that are differentially expressed have the best potential as pretreatment enzymes for CS and SR feedstocks.

【 授权许可】

   
2015 Rajarapu et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150429022518672.pdf 1052KB PDF download
Figure 4. 69KB Image download
Figure 3. 15KB Image download
Figure 2. 25KB Image download
Figure 1. 27KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Naik SN, Goud VV, Rout PK, Dalai AK: Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 2010, 14(2):578-97.
  • [2]Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 2005, 96(6):673-86.
  • [3]Hendriks ATWM, Zeeman G: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 2009, 100(1):10-8.
  • [4]Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee Y: Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 2005, 96(18):1959-66.
  • [5]Kumar P, Barrett DM, Delwiche MJ, Stroeve P: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 2009, 48(8):3713-29.
  • [6]Nakagame S, Chandra RP, Kadla JF, Saddler JN: The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose. Bioresour Technol 2011, 102(6):4507-17.
  • [7]Li H, Pu Y, Kumar R, Ragauskas AJ, Wyman CE: Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol Bioeng 2014, 111(3):485-92.
  • [8]Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, Jimenez-Gasco MM, et al.: Lignin degradation in wood-feeding insects. Proc Natl Acad Sci U S A 2008, 105(35):12932-7.
  • [9]Scharf ME, Tartar A: Termite digestomes as sources for novel lignocellulases. Biofuels Bioproducts & Biorefining-Biofpr 2008, 2(6):540-52.
  • [10]Ohkuma M: Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 2003, 61(1):1-9.
  • [11]Ohkuma M: Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 2008, 16(7):345-52.
  • [12]Ni JF, Tokuda G: Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol Adv 2013, 31(6):838-50.
  • [13]Scharf ME, Karl ZJ, Sethi A, Boucias DG: Multiple levels of synergistic collaboration in Termite lignocellulose digestion. PLoS ONE 2011, 6(7):e21709.
  • [14]Scharf ME, Kovaleva ES, Jadhao S, Campbell JH, Buchman GW, Boucias DG: Functional and translational analyses of a beta-glucosidase gene (glycosyl hydrolase family 1) isolated from the gut of the lower termite Reticulitermes flavipes. Insect Biochem Mol Biol 2010, 40(8):611-20.
  • [15]Sethi A, Kovaleva ES, Slack JM, Brown S, Buchman GW, Scharf ME: A GHF7 Cellulase from the protist symbiont community of Reticulitermes flavipes enables more efficeint lignocellulose processing by host enzymes. Arch Insect Biochem Physiol 2013, 84(4):175-93.
  • [16]Sethi A, Slack JM, Kovaleva ES, Buchman GW, Scharf ME: Lignin-associated metagene expression in a lignocellulose-digesting termite. Insect Biochem Mol Biol 2013, 43(1):91-101.
  • [17]Fukushima RS, Hatfield RD: Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. J Agric Food Chem 2001, 49(7):3133-9.
  • [18]Fukushima RS, Hatfield RD: Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples. J Agric Food Chem 2004, 52(12):3713-20.
  • [19]Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, et al.: NREL Biomass Program: Determination of structural carbohydrates and lignin in biomass. Biomass Analysis Technology Team, Laboratory AnalyticalProcedure 2006.
  • [20]FastxToolkit available at http://hannonlab.cshl.edu/fastx_toolkit/index.html.
  • [21]A S: FASTQC : A quality control tool for high throughput sequence data. 2010.
  • [22]Liu J, Wang H, Yang H, Zhang Y, Wang J, Zhao F, Qi J: Composition-based classification of short metagenomic sequences elucidates the landscapes of taxonomic and functional enrichment of microorganisms. Nucleic Acids Res 2012, 41:e3.
  • [23]Tartar A, Wheeler MM, Zhou X, Coy MR, Boucias DG, Scharf ME: Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol Biofuels 2009, 2(1):25. BioMed Central Full Text
  • [24]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-10.
  • [25]Zhao Y, Tang H, Ye Y: RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data. Bioinformatics 2012, 28(1):125-6.
  • [26]R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2013. [http://www.R-project.org/ webcite] [ISBN 3-900051-07-0]
  • [27]Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26(1):139-40.
  • [28]Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, et al.: The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC bioinf 2008, 9(1):386. BioMed Central Full Text
  • [29]CLARKE KR: Non‐parametric multivariate analyses of changes in community structure. Aust J Ecol 1993, 18(1):117-43.
  • [30]Anderson MJ: A new method for non‐parametric multivariate analysis of variance. Austral ecol 2001, 26(1):32-46.
  • [31]Cell counting with the Sedgewick-Rafter chamber and Whipple Micrometer Disc [http://www.protocol-online.org/prot/Protocols/Cell-Counting-with-the-Sedgewick-Rafter-Chamber-and-Whipple-Micrometer-Disc-4315.html]
  • [32]Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. In: Bioinformatics methods and protocols. Springer; 1999: 365–386
  • [33]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25(4):402-8.
  • [34]Wallace RJ: Antimicrobial properties of plant secondary metabolites. Proc Nutr Soc 2004, 63(4):621-9.
  • [35]Santra A, Banerjee A, Das SK, Chatterjee A: Effect of plants containing secondary metabolites on ruminal fermentation and methanogenesis in vitro. Indian J Anim Sci 2012, 82(2):194-9.
  • [36]Alfazairy AAM: Antimicrobial activity of certain essential oils against hindgut symbionts of the dry wood termite Kalotermes flavicollis Fabr. and prevalent fungi on termite-infested wood. Egypt J Biol Pest Control 2005, 15(1/2):27-33.
  • [37]Boucias DG, Cai Y, Sun Y, Lietze V-U, Sen R, Raychoudhury R, et al.: The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Mol Ecol 2013, 22(7):1836-53.
  • [38]Ohkuma M, Brune A: Diversity, structure, and evolution of the termite gut microbial community. In Biology of termites: a modern synthesis. Edited by Bignell DE, Roisin Y, Lo N. Springer, Dordrecht, The Netherlands; 2011:413-438.
  • [39]Lucey KS, Leadbetter JR: Catechol 2, 3-dioxygenase and other meta-cleavage catabolic pathway genes in the ‘anaerobic’termite gut spirochete Treponema primitia. Mol Ecol 2014, 23(6):1531-43.
  • [40]Johnson WH Jr, Hajipour G, Whitman CP: Stereochemical Studies of 5-(Carboxymethyl)-2-hydroxymuconate Isomerase and 5-(Carboxymethyl)-2-oxo-3-hexene-1, 6-dioate Decarboxylase from Escherichia coli C: Mechanistic and Evolutionary Implications. J Am Chem Soc 1995, 117(34):8719-26.
  • [41]Hajipour G, Johnson WH Jr, Dauben PD, Stolowich NJ, Whitman CP: Chemical and enzymic ketonization of 5-(carboxymethyl)-2-hydroxymuconate. J Am Chem Soc 1993, 115(9):3533-42.
  • [42]Johnson GL, Lapadat R: Mitogen-Activated Protein Kinase pathways mediated by ERK, JNK, and p38 Protein Kinases. Science 2002, 298(5600):1911-2.
  • [43]Hirano T: Condensins: universal organizers of chromosomes with diverse functions. Genes Dev 2012, 26(15):1659-78.
  • [44]Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28(1):27-30.
  • [45]Raychoudhury R, Sen R, Cai Y, Sun Y, Lietze VU, Boucias DG, et al.: Comparative metatranscriptomic signatures of wood and paper feeding in the gut of the termite Reticulitermes flavipes (Isoptera: Rhinotermitidae). Insect Mol Biol 2013, 22(2):155-71.
  • [46]Zhou X, Smith JA, Oi FM, Koehler PG, Bennett GW, Scharf ME: Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 2007, 395(1–2):29-39.
  文献评价指标  
  下载次数:78次 浏览次数:45次