期刊论文详细信息
BMC Infectious Diseases
Human brucellosis occurrences in inner mongolia, China: a spatio-temporal distribution and ecological niche modeling approach
Andrew Joyner2  Peng Jia1 
[1] Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA, USA;Department of Geosciences, East Tennessee State University, Johnson City, TN, USA
关键词: Mongolia;    China;    Inner Mongolia;    Spatial analysis;    Ecological niche modeling;    Remote sensing technology;    Geographic information systems;    Brucellosis;   
Others  :  1120414
DOI  :  10.1186/s12879-015-0763-9
 received in 2014-09-19, accepted in 2015-01-15,  发布年份 2015
PDF
【 摘 要 】

Background

Brucellosis is a common zoonotic disease and remains a major burden in both human and domesticated animal populations worldwide. Few geographic studies of human Brucellosis have been conducted, especially in China. Inner Mongolia of China is considered an appropriate area for the study of human Brucellosis due to its provision of a suitable environment for animals most responsible for human Brucellosis outbreaks.

Methods

The aggregated numbers of human Brucellosis cases from 1951 to 2005 at the municipality level, and the yearly numbers and incidence rates of human Brucellosis cases from 2006 to 2010 at the county level were collected. Geographic Information Systems (GIS), remote sensing (RS) and ecological niche modeling (ENM) were integrated to study the distribution of human Brucellosis cases over 1951–2010.

Results

Results indicate that areas of central and eastern Inner Mongolia provide a long-term suitable environment where human Brucellosis outbreaks have occurred and can be expected to persist. Other areas of northeast China and central Mongolia also contain similar environments.

Conclusions

This study is the first to combine advanced spatial statistical analysis with environmental modeling techniques when examining human Brucellosis outbreaks and will help to inform decision-making in the field of public health.

【 授权许可】

   
2015 Jia and Joyner; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150210030115292.pdf 2026KB PDF download
Figure 7. 117KB Image download
Figure 6. 157KB Image download
Figure 5. 169KB Image download
Figure 4. 170KB Image download
Figure 3. 64KB Image download
Figure 2. 40KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Corbel MJ: Brucellosis: an overview. Emerg Infect Dis 1997, 3(2):213-221.
  • [2]Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV: The new global map of human brucellosis. Lancet Infect Dis 2006, 6(2):91-99.
  • [3]Gwida M, Al Dahouk S, Melzer F, Rosler U, Neubauer H, Tomaso H: Brucellosis - regionally emerging zoonotic disease? Croat Med J 2010, 51(4):289-295.
  • [4]Abdullayev R, Kracalik I, Ismayilova R, Ustun N, Talibzade A, Blackburn JK: Analyzing the spatial and temporal distribution of human brucellosis in Azerbaijan (1995–2009) using spatial and spatio-temporal statistics. BMC Infect Dis 2012, 12:185. BioMed Central Full Text
  • [5]Crawford RP, Huber JD, Adams BS: Epidemiology and surveillance. In Animal Brucellosis. CRC Press, Boca Raton; 1990:131-151.
  • [6]Zinsstag J, Roth F, Orkhon D, Chimed-Ochir G, Nansalmaa M, Kolar J, et al.: A model of animal-human brucellosis transmission in Mongolia. Prev Vet Med 2005, 69(1–2):77-95.
  • [7]Alexander KA, Blackburn JK, Vandewalle ME, Pesapane R, Baipoledi EK, Elzer PH: Buffalo, bush meat, and the zoonotic threat of brucellosis in Botswana. PLoS One 2012, 7(3):e32842.
  • [8]Godfroid J, Scholz HC, Barbier T, Nicolas C, Wattiau P, Fretin D, et al.: Brucellosis at the animal/ecosystem/human interface at the beginning of the 21st century. Prev Vet Med 2011, 102(2):118-131.
  • [9]Plumb GE, Olsen SC, Buttke D: Brucellosis: 'One Health' challenges and opportunities. Rev Sci Tech 2013, 32(1):271-278.
  • [10]Dean AS, Crump L, Greter H, Hattendorf J, Schelling E, Zinsstag J: Clinical manifestations of human brucellosis: a systematic review and meta-analysis. PLoS Negl Trop Dis 2012, 6(12):e1929.
  • [11]Memish ZA, Balkhy HH: Brucellosis and international travel. J Travel Med 2004, 11(1):49-55.
  • [12]Christensen BW MD, TM H: Female reproductive disorders. In Large Animal Internal Medicine. 4th edition. Edited by SB P. Mosby-Elsevier, St. Louis, MO; 2009:1461.
  • [13]Dean AS, Crump L, Greter H, Schelling E, Zinsstag J: Global burden of human brucellosis: a systematic review of disease frequency. PLoS Negl Trop Dis 2012, 6(10):e1865.
  • [14]Zhang J, Yin F, Zhang T, Yang C, Zhang X, Feng Z, et al.: Spatial analysis on human brucellosis incidence in mainland China: 2004–2010. BMJ open 2014, 4(4):e004470.
  • [15]Godfroid J, Kasbohrer A: Brucellosis in the European Union and Norway at the turn of the twenty-first century. Vet Microbiol 2002, 90(1–4):135-145.
  • [16]Tweddle NE, Livingstone P: Bovine tuberculosis control and eradication programs in Australia and New Zealand. Vet Microbiol 1994, 40(1–2):23-39.
  • [17]Shang D, Xiao D, Yin J: Epidemiology and control of brucellosis in China. Vet Microbiol 2002, 90(1–4):165-182.
  • [18]Zhang WY, Guo WD, Sun SH, Jiang JF, Sun HL, Li SL, et al.: Human brucellosis, Inner Mongolia, China. Emerg Infect Dis 2010, 16(12):2001-2003.
  • [19]Zhong Z, Yu S, Wang X, Dong S, Xu J, Wang Y, et al.: Human brucellosis in the People's Republic of China during 2005–2010. Int J Infect Dis IJID Off Publ Int Soc Infect Dis 2013, 17(5):e289-e292.
  • [20]Chen Y, Ke Y, Wang Y, Yuan X, Zhou X, Jiang H, et al.: Changes of predominant species/biovars and sequence types of Brucella isolates, Inner Mongolia. Chin BMC Infect Dis 2013, 13:514. BioMed Central Full Text
  • [21]Hou Q, Sun X, Zhang J, Liu Y, Wang Y, Jin Z: Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region, China. Math Biosci 2013, 242(1):51-58.
  • [22]Li YJ, Li XL, Liang S, Fang LQ, Cao WC: Epidemiological features and risk factors associated with the spatial and temporal distribution of human brucellosis in China. BMC Infect Dis 2013, 13:547. BioMed Central Full Text
  • [23]Angerer J, Han G, Fujisaki I, Havstad K: Climate change and ecosystems of Asia with emphasis on Inner Mongolia and Mongolia. Rangelands 2008, 30(3):46-51.
  • [24]Xue Y: The impact of desertification in the Mongolian and the Inner Mongolian grassland on the regional climate. J Clim 1996, 9(9):2173-2189.
  • [25]Chen WBCQ ZHJ, Chi R, Ma Y: Analysis of epidemic characteristics on brucellosis in Inner Mongolia. Chinese J Control of Endemic Dis 2008, 23(1):56-58.
  • [26]Rogers DJ: Satellites, space, time and the African trypanosomiases. Adv Parasitol 2000, 47:129-171.
  • [27]Rogers DJ, Randolph SE, Snow RW, Hay SI: Satellite imagery in the study and forecast of malaria. Nature 2002, 415(6872):710-715.
  • [28]Scharlemann JP, Benz D, Hay SI, Purse BV, Tatem AJ, Wint GW, et al.: Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PLoS One 2008, 3(1):e1408.
  • [29]Kitron U, Kazmierczak JJ: Spatial analysis of the distribution of Lyme disease in Wisconsin. Am J Epidemiol 1997, 145(6):558-566.
  • [30]Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 2002, 83(1):195-213.
  • [31]Sims DA, Rahman AF, Cordova VD, El-Masri BZ, Baldocchi DD, Bolstad PV, et al.: A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sens Environ 2008, 112(4):1633-1646.
  • [32]Tatem AJ, Snow RW, Hay SI: Mapping the environmental coverage of the INDEPTH demographic surveillance system network in rural Africa. Tropical Med Int Health TM IH 2006, 11(8):1318-1326.
  • [33]Baptista Rosas RC, Hinojosa A, Riquelme M: Ecological niche modeling of Coccidioides spp. in western North American deserts. Ann N Y Acad Sci 2007, 1111:35-46.
  • [34]Gonzalez C, Wang O, Strutz SE, Gonzalez-Salazar C, Sanchez-Cordero V, Sarkar S: Climate change and risk of leishmaniasis in north america: predictions from ecological niche models of vector and reservoir species. PLoS Negl Trop Dis 2010, 4(1):e585.
  • [35]Papeş M, Gaubert P: Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Divers Distrib 2007, 13(6):890-902.
  • [36]Ron L, Benitez W, Speybroeck N, Ron J, Saegerman C, Berkvens D, et al.: Spatio-temporal clusters of incident human brucellosis cases in Ecuador. Spatial Spatio-Temporal Epidemiol 2013, 5:1-10.
  • [37]Robinson TP, Wint GW, Conchedda G, Van Boeckel TP, Ercoli V, Palamara E: Mapping the global distribution of livestock. PLoS One 2014, 9(5):e96084.
  • [38]Center for International Earth Science Information Network - CIESIN - Columbia University, International Food Policy Research Institute - IFPRI: Global Rural–urban Mapping Project, Version 1 (GRUMPv1): Population Density Grid In The World Bank, Centro Internacional de Agricultura Tropical - CIAT. NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY; 2011.
  • [39]Nelson A: Estimated Travel Time to the Nearest City of 50,000 or More People in Year 2000. In. Edited by Commission GEMU-JRCotE, Ispra, Italy; 2008.
  • [40]Tobler WR: A computer movie simulating urban growth in the Detroit region. Econ Geogr 1970, 46:234-240.
  • [41]Anselin L, Syabri I, Kho Y: GeoDa: an introduction to spatial data analysis. Geogr Anal 2006, 38(1):5-22.
  • [42]Anselin L: Local indicators of spatial association—LISA. Geogr Anal 1995, 27(2):93-115.
  • [43]Phillips, S. J., Dudík, M., & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the twenty-first international conference on Machine learning (p. 83). ACM. (2004, July)
  • [44]Phillips SJ, Anderson RP, Schapire RE: Maximum entropy modeling of species geographic distributions. Ecol Model 2006, 190(3):231-259.
  • [45]Machado-Machado EA: Empirical mapping of suitability to dengue fever in Mexico using species distribution modeling. Appl Geogr 2012, 33:82-93.
  • [46]McDermott JJ, Arimi SM: Brucellosis in sub-Saharan Africa: epidemiology, control and impact. Vet Microbiol 2002, 90(1–4):111-134.
  • [47]Mischler P, Kearney M, McCarroll JC, Scholte RG, Vounatsou P, Malone JB: Environmental and socio-economic risk modelling for Chagas disease in Bolivia. Geospat Health 2012, 6(3):S59-S66.
  • [48]Fischer D, Thomas SM, Niemitz F, Reineking B, Beierkuhnlein C: Projection of climatic suitability for Aedes albopictus Skuse (Culicidae) in Europe under climate change conditions. Global Planet Change 2011, 78(1):54-64.
  • [49]Benedict MQ, Levine RS, Hawley WA, Lounibos LP: Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis 2007, 7(1):76-85.
  • [50]Escobar LE, Peterson AT, Favi M, Yung V, Pons DJ, Medina-Vogel G: Ecology and geography of transmission of Two Bat-borne rabies lineages in Chile. PLoS Negl Trop Dis 2013, 7(12):e2577.
  • [51]Medley KA: Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Glob Ecol Biogeogr 2010, 19(1):122-133.
  • [52]Mancini FR, Bella A, Graziani C, Marianelli C, Mughini-Gras L, Pasquali P, et al.: Trends of human brucellosis in Italy, 1998–2010. Epidemiol Infect 2014, 142(6):1188-1195.
  • [53]Al Dahouk S, Neubauer H, Hensel A, Schoneberg I, Nockler K, Alpers K, et al.: Changing epidemiology of human brucellosis, Germany, 1962–2005. Emerg Infect Dis 2007, 13(12):1895-1900.
  • [54]Chomel BB, DeBess EE, Mangiamele DM, Reilly KF, Farver TB, Sun RK, et al.: Changing trends in the epidemiology of human brucellosis in California from 1973 to 1992: a shift toward foodborne transmission. J Infect Dis 1994, 170(5):1216-1223.
  • [55]Chen Z, Zhang W, Ke Y, Wang Y, Tian B, Wang D, et al.: High-risk regions of human brucellosis in china: implications for prevention and early diagnosis of travel-related infections. Clin infect Dis An Off Publ Infect Dis Soc Am 2013, 57(2):330-332.
  • [56]CAHY: China animal husbandry yearbook. China Agriculture Press, Beijing; 2005.
  • [57]Ayala D, Costantini C, Ose K, Kamdem GC, Antonio-Nkondjio C, Agbor JP, et al.: Habitat suitability and ecological niche profile of major malaria vectors in Cameroon. Malar J 2009, 8:307. BioMed Central Full Text
  • [58]Moffett A, Shackelford N, Sarkar S: Malaria in Africa: vector species' niche models and relative risk maps. PLoS One 2007, 2(9):e824.
  • [59]Peterson AT, Martinez-Campos C, Nakazawa Y, Martinez-Meyer E: Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases. Trans R Soc Trop Med Hyg 2005, 99(9):647-655.
  文献评价指标  
  下载次数:206次 浏览次数:48次