期刊论文详细信息
BMC Genomics
Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei
Marilyn Parsons1  Peter J Myler2  Nicholas T Ingolia3  Elton J R Vasconcelos4  Gowthaman Ramasamy4  Bryan C Jensen4 
[1] Department of Global Health, University of Washington, Harris Hydraulics Building, 1705 NE Pacific St #310E, Box 357965, Seattle, WA 98195, USA;Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA;Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA;Seattle Biomedical Research Institute, 307 Westlake Ave N, Seattle, WA 98109-5219, USA
关键词: Translation;    Trypanosome;    Stage-regulation;    Ribosome profiling;    Ribosomal proteins;   
Others  :  1128445
DOI  :  10.1186/1471-2164-15-911
 received in 2014-09-21, accepted in 2014-10-09,  发布年份 2014
PDF
【 摘 要 】

Background

Trypanosoma brucei subspecies infect humans and animals in sub-Saharan Africa. This early diverging eukaryote shows many novel features in basic biological processes, including the use of polycistronic transcription to generate all protein-coding mRNAs. Therefore we hypothesized that translational control provides a means to tune gene expression during parasite development in mammalian and fly hosts.

Results

We used ribosome profiling to examine genome-wide protein synthesis in animal-derived slender bloodstream forms and cultured procyclic (insect midgut) forms. About one-third of all CDSs showed statistically significant regulation of protein production between the two stages. Of these, more than two-thirds showed a change in translation efficiency, but few appeared to be controlled by this alone. Ribosomal proteins were translated poorly, especially in animal-derived parasites. A disproportionate number of metabolic enzymes were up-regulated at the mRNA level in procyclic forms, as were variant surface glycoproteins in bloodstream forms. Comparison with cultured bloodstream forms from another strain revealed stage-specific changes in gene expression that transcend strain and growth conditions. Genes with upstream ORFs had lower mean translation efficiency, but no evidence was found for involvement of uORFs in stage-regulation.

Conclusions

Ribosome profiling revealed that differences in the production of specific proteins in T. brucei bloodstream and procyclic forms are more extensive than predicted by analysis of mRNA abundance. While in vivo and in vitro derived bloodstream forms from different strains are more similar to one another than to procyclic forms, they showed many differences at both the mRNA and protein production level.

【 授权许可】

   
2014 Jensen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150223143538438.pdf 1836KB PDF download
Figure 6. 52KB Image download
Figure 5. 114KB Image download
Figure 4. 104KB Image download
Figure 3. 76KB Image download
Figure 2. 99KB Image download
Figure 1. 93KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Kramer S: Developmental regulation of gene expression in the absence of transcriptional control: The case of kinetoplastids. Mol Biochem Parasitol 2011, 181:61-72.
  • [2]Urbaniak MD, Guther ML, Ferguson MA: Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages. PLoS One 2012, 7:e36619.
  • [3]Urbaniak MD, Martin D, Ferguson MA: Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei. J Proteome Res 2013, 12:2233-2244.
  • [4]Diehl S, Diehl F, El Sayed NM, Clayton C, Hoheisel JD: Analysis of stage-specific gene expression in the bloodstream and the procyclic form of Trypanosoma brucei using a genomic DNA-microarray. Mol Biochem Parasitol 2002, 123:115-123.
  • [5]Koumandou VL, Natesan SK, Sergeenko T, Field MC: The trypanosome transcriptome is remodelled during differentiation but displays limited responsiveness within life stages. BMC Genomics 2008, 9:298.
  • [6]Kabani S, Fenn K, Ross A, Ivens A, Smith TK, Ghazal P, Matthews K: Genome-wide expression profiling of in vivo-derived bloodstream parasite stages and dynamic analysis of mRNA alterations during synchronous differentiation in Trypanosoma brucei. BMC Genomics 2009, 10:427.
  • [7]Jensen BC, Sivam D, Kifer CT, Myler PJ, Parsons M: Widespread variation in transcript abundance within and across developmental stages of Trypanosoma brucei. BMC Genomics 2009, 10:482.
  • [8]Veitch NJ, Johnson PC, Trivedi U, Terry S, Wildridge D, MacLeod A: Digital gene expression analysis of two life cycle stages of the human-infective parasite, Trypanosoma brucei gambiense reveals differentially expressed clusters of co-regulated genes. BMC Genomics 2010, 11:124.
  • [9]Siegel TN, Hekstra DR, Wang X, Dewell S, Cross GA: Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res 2010, 38:4946-4957.
  • [10]Kolev NG, Franklin JB, Carmi S, Shi H, Michaeli S, Tschudi C: The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog 2010, 6:e1001090.
  • [11]Nilsson D, Gunasekera K, Mani J, Osteras M, Farinelli L, Baerlocher L, Roditi I, Ochsenreiter T: Spliced leader trapping reveals widespread alternative splicing patterns in the highly dynamic transcriptome of Trypanosoma brucei. PLoS Pathog 2010, 6:e1001037.
  • [12]Queiroz R, Benz C, Fellenberg K, Hoheisel JD, Clayton C: Transcriptome analysis of differentiating trypanosomes reveals the existence of multiple post-transcriptional regulons. BMC Genomics 2009, 10:495.
  • [13]Clayton C, Shapira M: Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 2007, 156:93-101.
  • [14]Berberof M, Vanhamme L, Tebabi P, Pays A, Jefferies D, Welburn S, Pays E: The 3′-terminal region of the mRNAs for VSG and procyclin can confer stage specificity to gene expression in Trypanosoma brucei. EMBO J 1995, 14:2925-2934.
  • [15]Furger A, Schürch N, Kurath U, Roditi I: Elements in the 3′ untranslated region of procyclin mRNA regulate expression in insect forms of Trypanosoma brucei by modulating RNA stability and translation. Mol Cell Biol 1997, 17:4372-4380.
  • [16]Li J, Ruyechan WT, Williams N: Stage-specific translational efficiency and protein stability regulate the developmental expression of p37, an RNA binding protein from Trypanosoma brucei. Biochem Biophys Res Commun 2003, 306:918-923.
  • [17]Gale MJ Jr, Carter V, Parsons M: Translational control mediates the developmental regulation of the Trypanosoma brucei Nrk protein kinase. J Biol Chem 1994, 269:31659-31665.
  • [18]Hotz HR, Hartmann C, Huober K, Hug M, Clayton C: Mechanisms of developmental regulation in Trypanosoma brucei: A polypyrimidine tract in the 3′-untranslated region of a surface protein mRNA affects RNA abundance and translation. Nucleic Acids Res 1997, 25:3017-3025.
  • [19]Capewell P, Monk S, Ivens A, Macgregor P, Fenn K, Walrad P, Bringaud F, Smith TK, Matthews KR: Regulation of Trypanosoma brucei total and polysomal mRNA during development within its mammalian host. PLoS One 2013, 8:e67069.
  • [20]Vasquez JJ, Hon CC, Vanselow JT, Schlosser A, Siegel TN: Comparative ribosome profiling reveals extensive translational complexity in different Trypanosoma brucei life cycle stages. Nucleic Acids Res 2014, 42:3623-3637.
  • [21]Martinez-Calvillo S, Nguyen D, Stuart K, Myler PJ: Transcription initiation and termination on Leishmania major chromosome 3. Eukaryot Cell 2004, 3:506-517.
  • [22]Myler PJ, Audleman L, deVos T, Hixson G, Kiser P, Lemley C, Magness C, Rickel E, Sisk E, Sunkin S, Swartzell S, Westlake T, Bastien P, Fu G, Ivens A, Stuart K: Leishmania major Friedlin chromosome 1 has an unusual distribution of protein-coding genes. Proc Natl Acad Sci U S A 1999, 96:2902-2906.
  • [23]El Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, Ghedin E, Peacock C, Bartholomeu DC, Haas BJ, Tran AN, Wortman JR, Alsmark UC, Angiuoli S, Anupama A, Badger J, Bringaud F, Cadag E, Carlton JM, Cerqueira GC, Creasy T, Delcher AL, Djikeng A, Embley TM, Hauser C, Ivens AC, et al.: Comparative genomics of trypanosomatid parasitic protozoa. Science 2005, 309:404-409.
  • [24]Liang XH, Haritan A, Uliel S, Michaeli S: Trans and cis splicing in trypanosomatids: mechanism, factors, and regulation. Eukaryot Cell 2003, 2:830-840.
  • [25]Clayton CE: Networks of gene expression regulation in Trypanosoma brucei. Mol Biochem Parasitol 2014, 195:96-106.
  • [26]Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M: Global quantification of mammalian gene expression control. Nature 2011, 473:337-342.
  • [27]Sonenberg N, Hinnebusch AG: Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009, 136:731-745.
  • [28]Parsyan A, Svitkin Y, Shahbazian D, Gkogkas C, Lasko P, Merrick WC, Sonenberg N: mRNA helicases: the tacticians of translational control. Nat Rev Mol Cell Biol 2011, 12:235-245.
  • [29]Villalba A, Coll O, Gebauer F: Cytoplasmic polyadenylation and translational control. Curr Opin Genet Dev 2011, 21:452-457.
  • [30]Jackson RJ, Hellen CU, Pestova TV: The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010, 11:113-127.
  • [31]Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen C, Bonham MJ, Wang S, Ren P, Martin M, Jessen K, Feldman ME, Weissman JS, Shokat KM, Rommel C, Ruggero D: The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 2012, 485:55-61.
  • [32]Joyce BR, Tampaki Z, Kim K, Wek RC, Sullivan WJ Jr: The unfolded protein response in the protozoan parasite Toxoplasma gondii features translational and transcriptional control. Eukaryot Cell 2013, 12:979-989.
  • [33]Liu MJ, Wu SH, Wu JF, Lin WD, Wu YC, Tsai TY, Tsai HL, Wu SH: Translational landscape of photomorphogenic arabidopsis. Plant Cell 2013, 25:3699-3710.
  • [34]Zhang M, Joyce BR, Sullivan WJ Jr, Nussenzweig V: Translational control in plasmodium and toxoplasma parasites. Eukaryot Cell 2012, 12:161-167.
  • [35]Zhang M, Fennell C, Ranford-Cartwright L, Sakthivel R, Gueirard P, Meister S, Caspi A, Doerig C, Nussenzweig RS, Tuteja R, Sullivan WJ Jr, Roos DS, Fontoura BM, Menard R, Winzeler EA, Nussenzweig V: The Plasmodium eukaryotic initiation factor-2alpha kinase IK2 controls the latency of sporozoites in the mosquito salivary glands. J Exp Med 2010, 207:1465-1474.
  • [36]Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS: Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 2009, 324:218-223.
  • [37]Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS: The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 2012, 7:1534-1550.
  • [38]Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES: Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 2013, 154:240-251.
  • [39]Chew GL, Pauli A, Rinn JL, Regev A, Schier AF, Valen E: Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs. Development 2013, 140:2828-2834.
  • [40]McCarthy DJ, Chen Y, Smyth GK: Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 2012, 40:4288-4297.
  • [41]Mani J, Guttinger A, Schimanski B, Heller M, Acosta-Serrano A, Pescher P, Spath G, Roditi I: Alba-domain proteins of Trypanosoma brucei are cytoplasmic RNA-binding proteins that interact with the translation machinery. PLoS One 2011, 6:e22463.
  • [42]Estevez AM: The RNA-binding protein TbDRBD3 regulates the stability of a specific subset of mRNAs in trypanosomes. Nucleic Acids Res 2008, 36:4573-4586.
  • [43]Droll D, Minia I, Fadda A, Singh A, Stewart M, Queiroz R, Clayton C: Post-transcriptional regulation of the trypanosome heat shock response by a zinc finger protein. PLoS Pathog 2013, 9:e1003286.
  • [44]Ingolia NT, Brar GA, Stern-Ginossar N, Harris MS, Talhouarne GJ, Jackson SE, Wills MR, Weissman JS: Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep 2014, 8:1365-1379.
  • [45]Kirstein-Miles J, Scior A, Deuerling E, Morimoto RI: The nascent polypeptide-associated complex is a key regulator of proteostasis. EMBO J 2013, 32:1451-1468.
  • [46]Lacombe T, Garcia-Gomez JJ, de La Cruz J, Roser D, Hurt E, Linder P, Kressler D: Linear ubiquitin fusion to Rps31 and its subsequent cleavage are required for the efficient production and functional integrity of 40S ribosomal subunits. Mol Microbiol 2009, 72:69-84.
  • [47]Bringaud F, Riviere L, Coustou V: Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol 2006, 149:1-9.
  • [48]Fairlamb AH, Opperdoes FR: Carbohydrate Metabolism In African Trypanosomes, With Special Reference To The Glycosome. In Carbohydrate Metabolism in Cultured Cells. Edited by Morgan MJ. New York: Plenum Publishing Corp; 1986:183-224.
  • [49]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106.
  • [50]Roy B, Jacobson A: The intimate relationships of mRNA decay and translation. Trends Genet 2013, 29:691-699.
  • [51]Barbosa C, Peixeiro I, Romao L: Gene expression regulation by upstream open reading frames and human disease. PLoS Genet 2013, 9:e1003529.
  • [52]Spriggs KA, Bushell M, Willis AE: Translational regulation of gene expression during conditions of cell stress. Mol Cell 2010, 40:228-237.
  • [53]von Arnim AG, Jia Q, Vaughn JN: Regulation of plant translation by upstream open reading frames. Plant Sci 2014, 214:1-12.
  • [54]Arribere JA, Gilbert WV: Roles for transcript leaders in translation and mRNA decay revealed by transcript leader sequencing. Genome Res 2013, 23:977-987.
  • [55]Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Bohme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UC, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, et al.: The genome of the African trypanosome Trypanosoma brucei. Science 2005, 309:416-422.
  • [56]Butter F, Bucerius F, Michel M, Cicova Z, Mann M, Janzen CJ: Comparative proteomics of two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite's host adaptation machinery. Mol Cell Proteomics 2013, 12:173-179.
  • [57]Clayton CE: Most proteins, including fructose bisphosphate aldolase, are stable in the procyclic trypomastigote form of Trypanosoma brucei. Mol Biochem Parasitol 1988, 28:43-46.
  • [58]Pichon X, Wilson LA, Stoneley M, Bastide A, King HA, Somers J, Willis AE: RNA binding protein/RNA element interactions and the control of translation. Curr Protein Pept Sci 2012, 13:294-304.
  • [59]Hamilton TL, Stoneley M, Spriggs KA, Bushell M: TOPs and their regulation. Biochem Soc Trans 2006, 34:12-16.
  • [60]Meyuhas O: Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem 2000, 267:6321-6330.
  • [61]Jimenez-Lopez S, Mancera-Martinez E, Donayre-Torres A, Rangel C, Uribe L, March S, Jimenez-Sanchez G, de JE S: Expression profile of maize (Zea mays L.) embryonic axes during germination: translational regulation of ribosomal protein mRNAs. Plant Cell Physiol 2011, 52:1719-1733.
  • [62]Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 1994, 2:28-36.
  • [63]Brecht M, Parsons M: Changes in polysome profiles accompany trypanosome development. Mol Biochem Parasitol 1998, 97:189-198.
  • [64]Hirumi H, Hirumi K: Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cells. J Parasitol 1989, 75:985-989.
  • [65]Brun R, Schoenonberger M: Cultivation and in vitro cloning of procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Trop 1979, 36:289-292.
  • [66]Ingolia NT, Lareau LF, Weissman JS: Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 2011, 147:789-802.
  • [67]Mittra B, Cortez M, Haydock A, Ramasamy G, Myler PJ, Andrews NW: Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels. J Exp Med 2013, 210:401-416.
  • [68]Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods 2012, 9:357-359.
  • [69]Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA: Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012, 28:464-469.
  • [70]Anders S, Pyl PT, Huber W: HTSeq — A Python framework to work with high-throughput sequencing data. Biorxiv 2014. doi:10.1101/002824
  • [71]Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J: TM4: a free, open-source system for microarray data management and analysis. Biotechniques 2003, 34:374-378.
  • [72]Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 2000, 16:276-277.
  文献评价指标  
  下载次数:5次 浏览次数:9次