期刊论文详细信息
BMC Molecular Biology
Single and combinatorial chromatin coupling events underlies the function of transcript factor krüppel-like factor 11 in the regulation of gene networks
Raul Urrutia1  Juan Iovanna4  Angela Mathison3  Gwen Lomberk3  Adrienne Grzenda3  Ezequiel Calvo2 
[1] Departments of Medicine, Physiology and Biochemistry, Mayo Clinic, 200 First Street SW, Guggenheim 10, Rochester, MN 55905, USA;Molecular Endocrinology and Oncology Research Center, CHUL Research Center, Quebec, Canada;Laboratory of Epigenetics and Chromatin Dynamics, Mayo Clinic, Rochester, MN 55905, USA;INSERM U.624, Stress Cellulaire, 163 Avenue de Luminy, Case 915, Parc Scientifique et Technologique de Luminy, 13288 Marseille, Cedex 9, France
关键词: Signaling pathways;    Proliferation;    Cellular growth;    Metabolism;    Gene networks;    Gene expression profiling;    Transcription factor;    Krüppel-like factor;   
Others  :  797777
DOI  :  10.1186/1471-2199-15-10
 received in 2013-09-23, accepted in 2014-05-07,  发布年份 2014
PDF
【 摘 要 】

Background

Krüppel-like factors (KLFs) are a group of master regulators of gene expression conserved from flies to human. However, scant information is available on either the mechanisms or functional impact of the coupling of KLF proteins to chromatin remodeling machines, a deterministic step in transcriptional regulation.

Results and discussion

In the current study, we use genome-wide analyses of chromatin immunoprecipitation (ChIP-on-Chip) and Affymetrix-based expression profiling to gain insight into how KLF11, a human transcription factor involved in tumor suppression and metabolic diseases, works by coupling to three co-factor groups: the Sin3-histone deacetylase system, WD40-domain containing proteins, and the HP1-histone methyltransferase system. Our results reveal that KLF11 regulates distinct gene networks involved in metabolism and growth by using single or combinatorial coupling events.

Conclusion

This study, the first of its type for any KLF protein, reveals that interactions with multiple chromatin systems are required for the full gene regulatory function of these proteins.

【 授权许可】

   
2014 Calvo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706081022455.pdf 1711KB PDF download
Figure 7. 105KB Image download
Figure 6. 226KB Image download
Figure 5. 160KB Image download
Figure 4. 122KB Image download
Figure 3. 178KB Image download
Figure 2. 99KB Image download
Figure 1. 187KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Lomberk G, Urrutia R: The family feud: turning off Sp1 by Sp1-like KLF proteins. Biochem J 2005, 392(Pt 1):1-11.
  • [2]Bonnefond A, Lomberk G, Buttar N, Busiah K, Vaillant E, Lobbens S, Yengo L, Dechaume A, Mignot B, Simon A, Scharfmann R, Neve B, Tanyolac S, Hodoglugil U, Pattou F, Cave H, Iovanna J, Stein R, Polak M, Vaxillaire M, Froguel P, Urrutia R: Disruption of a novel Kruppel-like transcription factor p300-regulated pathway for insulin biosynthesis revealed by studies of the c.-331 INS mutation found in neonatal diabetes mellitus. J Biol Chem 2011, 286(32):28414-28424.
  • [3]Fernandez-Zapico ME, van Velkinburgh JC, Gutierrez-Aguilar R, Neve B, Froguel P, Urrutia R, Stein R: MODY7 gene, KLF11, is a novel p300-dependent regulator of Pdx-1 (MODY4) transcription in pancreatic islet beta cells. J Biol Chem 2009, 284(52):36482-36490.
  • [4]Lomberk G, Grzenda A, Mathison A, Escande C, Zhang JS, Calvo E, Miller LJ, Iovanna J, Chini EN, Fernandez-Zapico ME, Urrutia R: Kruppel-like factor 11 regulates the expression of metabolic genes via an evolutionarily conserved protein-interaction domain functionally disrupted in maturity onset diabetes of the young. J Biol Chem 2013, 288(24):17745-17758.
  • [5]Grzenda A, Lomberk G, Zhang JS, Urrutia R: Sin3: master scaffold and transcriptional corepressor. Biochim Biophys Acta 2009, 1789(6–8):443-450.
  • [6]Grzenda A, Lomberk G, Svingen P, Mathison A, Calvo E, Iovanna J, Xiong Y, Faubion W, Urrutia R: Functional characterization of EZH2beta reveals the increased complexity of EZH2 isoforms involved in the regulation of mammalian gene expression. Epigenetics Chromatin 2013, 6(1):3. BioMed Central Full Text
  • [7]Lomberk G, Mathison AJ, Grzenda A, Seo S, DeMars CJ, Rizvi S, Bonilla-Velez J, Calvo E, Fernandez-Zapico ME, Iovanna J, Buttar NS, Urrutia R: Sequence-specific recruitment of heterochromatin protein 1 via interaction with Kruppel-like factor 11, a human transcription factor involved in tumor suppression and metabolic diseases. J Biol Chem 2012, 287(16):13026-13039.
  • [8]Seo S, Lomberk G, Mathison A, Buttar N, Podratz J, Calvo E, Iovanna J, Brimijoin S, Windebank A, Urrutia R: Kruppel-like factor 11 differentially couples to histone acetyltransferase and histone methyltransferase chromatin remodeling pathways to transcriptionally regulate dopamine D2 receptor in neuronal cells. J Biol Chem 2012, 287(16):12723-12735.
  • [9]Fan Y, Guo Y, Zhang J, Subramaniam M, Song CZ, Urrutia R, Chen YE: Kruppel-like factor-11, a transcription factor involved in diabetes mellitus, suppresses endothelial cell activation via the nuclear factor-kappaB signaling pathway. Arterioscler Thromb Vasc Biol 2012, 32(12):2981-2988.
  • [10]Fernandez-Zapico ME, Lomberk GA, Tsuji S, DeMars CJ, Bardsley MR, Lin YH, Almada LL, Han JJ, Mukhopadhyay D, Ordog T, Buttar NS, Urrutia R: A functional family-wide screening of SP/KLF proteins identifies a subset of suppressors of KRAS-mediated cell growth. Biochem J 2011, 435(2):529-537.
  • [11]Buttar NS, DeMars CJ, Lomberk G, Rizvi S, Bonilla-Velez J, Achra S, Rashtak S, Wang KK, Fernandez-Zapico ME, Urrutia R: Distinct role of Kruppel-like factor 11 in the regulation of prostaglandin E2 biosynthesis. J Biol Chem 2010, 285(15):11433-11444.
  • [12]Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V, Dina C, Hamid YH, Joly E, Vaillant E, Benmezroua Y, Durand E, Bakaher N, Delannoy V, Vaxillaire M, Cook T, Dallinga-Thie GM, Jansen H, Charles MA, Clement K, Galan P, Hercberg S, Helbecque N, Charpentier G, Prentki M, Hansen T, Pedersen O, Urrutia R, Melloul D, Froguel P: Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc Natl Acad Sci U S A 2005, 102(13):4807-4812.
  • [13]Ellenrieder V, Buck A, Harth A, Jungert K, Buchholz M, Adler G, Urrutia R, Gress TM: KLF11 mediates a critical mechanism in TGF-beta signaling that is inactivated by Erk-MAPK in pancreatic cancer cells. Gastroenterology 2004, 127(2):607-620.
  • [14]Pang YP, Kumar GA, Zhang JS, Urrutia R: Differential binding of Sin3 interacting repressor domains to the PAH2 domain of Sin3A. FEBS Lett 2003, 548(1–3):108-112.
  • [15]Fernandez-Zapico ME, Mladek A, Ellenrieder V, Folch-Puy E, Miller L, Urrutia R: An mSin3A interaction domain links the transcriptional activity of KLF11 with its role in growth regulation. Embo J 2003, 22(18):4748-4758.
  • [16]Kaczynski JA, Conley AA, Fernandez Zapico M, Delgado SM, Zhang JS, Urrutia R: Functional analysis of basic transcription element (BTE)-binding protein (BTEB) 3 and BTEB4, a novel Sp1-like protein, reveals a subfamily of transcriptional repressors for the BTE site of the cytochrome P4501A1 gene promoter. Biochem J 2002, 366(Pt 3):873-882.
  • [17]Ellenrieder V, Zhang JS, Kaczynski J, Urrutia R: Signaling disrupts mSin3A binding to the Mad1-like Sin3-interacting domain of TIEG2, an Sp1-like repressor. Embo J 2002, 21(10):2451-2460.
  • [18]Zhang JS, Moncrieffe MC, Kaczynski J, Ellenrieder V, Prendergast FG, Urrutia R: A conserved alpha-helical motif mediates the interaction of Sp1-like transcriptional repressors with the corepressor mSin3A. Mol Cell Biol 2001, 21(15):5041-5049.
  • [19]Kaczynski J, Zhang JS, Ellenrieder V, Conley A, Duenes T, Kester H, van Der Burg B, Urrutia R: The Sp1-like protein BTEB3 inhibits transcription via the basic transcription element box by interacting with mSin3A and HDAC-1 co-repressors and competing with Sp1. J Biol Chem 2001, 276(39):36749-36756.
  • [20]Mathison A, Liebl A, Bharucha J, Mukhopadhyay D, Lomberk G, Shah V, Urrutia R: Pancreatic stellate cell models for transcriptional studies of desmoplasia-associated genes. Pancreatology 2010, 10(4):505-516.
  • [21]Xiong Y, Khanna S, Grzenda AL, Sarmento OF, Svingen PA, Lomberk GA, Urrutia RA, Faubion WA Jr: Polycomb antagonizes p300/CREB-binding protein-associated factor to silence FOXP3 in a Kruppel-like factor-dependent manner. J Biol Chem 2012, 287(41):34372-34385.
  • [22]Xiao TZ, Bhatia N, Urrutia R, Lomberk GA, Simpson A, Longley BJ: MAGE I transcription factors regulate KAP1 and KRAB domain zinc finger transcription factor mediated gene repression. PLoS One 2011, 6(8):e23747.
  • [23]Daftary GS, Zheng Y, Tabbaa ZM, Schoolmeester JK, Gada RP, Grzenda AL, Mathison AJ, Keeney GL, Lomberk GA, Urrutia R: A novel role of the Sp/KLF Transcription Factor KLF11 in arresting progression of endometriosis. PLoS One 2013, 8(3):e60165.
  • [24]Yin KJ, Fan Y, Hamblin M, Zhang J, Zhu T, Li S, Hawse JR, Subramaniam M, Song CZ, Urrutia R, Lin JD, Chen YE: KLF11 mediates PPARgamma cerebrovascular protection in ischaemic stroke. Brain 2013, 136(Pt 4):1274-1287.
  • [25]Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R: In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007, 448(7151):318-324.
  • [26]Cook T, Gebelein B, Belal M, Mesa K, Urrutia R: Three conserved transcriptional repressor domains are a defining feature of the TIEG subfamily of Sp1-like zinc finger proteins. J Biol Chem 1999, 274(41):29500-29504.
  • [27]Zhang JS, Moncrieffe MC, Kaczynski J, Ellenrieder V, Prendergast FG, Urrutia R: A conserved alpha-helical motif mediates the interaction of Sp1-like transcriptional repressors with the corepressor mSin3A. Mol Cell Biol 2001, 21(15):5041-5049.
  • [28]Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001, 410(6824):120-124.
  • [29]Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001, 410(6824):116-120.
  • [30]Aasland R, Stewart AF: The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, HP1. Nucleic Acids Res 1995, 23(16):3168-3173.
  • [31]Chin HG, Esteve PO, Pradhan M, Benner J, Patnaik D, Carey MF, Pradhan S: Automethylation of G9a and its implication in wider substrate specificity and HP1 binding. Nucleic Acids Res 2007, 35(21):7313-7323.
  • [32]Fuks F, Hurd PJ, Deplus R, Kouzarides T: The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 2003, 31(9):2305-2312.
  • [33]McConnell BB, Yang VW: Mammalian Kruppel-like factors in health and diseases. Physiol Rev 2010, 90(4):1337-1381.
  • [34]Havula E, Teesalu M, Hyotylainen T, Seppala H, Hasygar K, Auvinen P, Oresic M, Sandmann T, Hietakangas V: Mondo/ChREBP-Mlx-regulated transcriptional network is essential for dietary sugar tolerance in Drosophila. PLoS Genet 2013, 9(4):e1003438.
  • [35]Small KS, Hedman AK, Grundberg E, Nica AC, Thorleifsson G, Kong A, Thorsteindottir U, Shin SY, Richards HB, Consortium G, Soranzo N, Ahmadi KR, Lindgren CM, Stefansson K, Dermitzakis ET, Deloukas P, Spector TD, McCarthy MI, Mu TC: Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet 2011, 43(6):561-564.
  • [36]Gebelein B, Fernandez-Zapico M, Imoto M, Urrutia R: KRAB-independent suppression of neoplastic cell growth by the novel zinc finger transcription factor KS1. J Clin Invest 1998, 102(11):1911-1919.
  • [37]Gebelein B, Urrutia R: Sequence-specific transcriptional repression by KS1, a multiple-zinc-finger-Kruppel-associated box protein. Mol Cell Biol 2001, 21(3):928-939.
  • [38]Seo S, Lomberk G, Mathison A, Buttar N, Podratz J, Calvo E, Iovanna J, Brimijoin S, Windebank A, Urrutia R: Kruppel-like factor 11 differentially couples to Histone Acetyltransferase and Histone Methyltransferase Chromatin remodeling pathways to transcriptionally regulate Dopamine D2 receptor in neuronal cells. J Biol Chem 2012, 287(16):12723-12735.
  • [39]Fernandez-Zapico ME, Lomberk GA, Tsuji S, DeMars CJ, Bardsley MR, Lin YH, Almada LL, Han JJ, Mukhopadhyay D, Ordog T, et al.: A functional family-wide screening of SP/KLF proteins identifies a subset of suppressors of KRAS-mediated cell growth. Biochem J 2011, 435(2):529-537.
  • [40]Lomberk G, Bensi D, Fernandez-Zapico ME, Urrutia R: Evidence for the existence of an HP1-mediated subcode within the histone code. Nat Cell Biol 2006, 8(4):407-415.
  • [41]Lomberk G, Mathison AJ, Grzenda A, Seo S, DeMars CJ, Rizvi S, Bonilla-Velez J, Calvo E, Fernandez-Zapico ME, Iovanna J, Buttar NS, Urrutia R: Sequence-specific recruitment of Heterochromatin protein 1 via interaction with kruppel-like factor 11, a human transcription factor involved in tumor suppression and metabolic diseases. J Biol Chem 2012, 287(16):13026-13039.
  • [42]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4(2):249-264.
  • [43]Prasanth SG, Prasanth KV, Siddiqui K, Spector DL, Stillman B: Human Orc2 localizes to centrosomes, centromeres and heterochromatin during chromosome inheritance. Embo J 2004, 23(13):2651-2663.
  • [44]Kondo Y, Shen L, Ahmed S, Boumber Y, Sekido Y, Haddad BR, Issa JP: Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. PLoS One 2008, 3(4):e2037.
  • [45]Wettenhall JM, Simpson KM, Satterley K, Smyth GK: affylmGUI: a graphical user interface for linear modeling of single channel microarray data. Bioinformatics 2006, 22(7):897-899.
  文献评价指标  
  下载次数:20次 浏览次数:16次