| BMC Genomics | |
| Reorganization of metastamiRs in the evolution of metastatic aggressive neuroblastoma cells | |
| Natarajan Aravindan1  Terence S Herman2  Sheeja Aravindan2  Satishkumar Ramraj1  Vijayabaskar Pandian1  Faizan H Khan1  | |
| [1] Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940, Stanton L. Young Boulevard, BMSB 737, Oklahoma City 73104, OK, USA;Stephenson Cancer Center, 975 NE 10th Street, BRC 1468, Oklahoma City 73104, OK, USA | |
| 关键词: Aggressive metastatic cells; SH-SY5Y; Tumor progression; miRNA; MetastamiRS; Neuroblastoma; High-risk metastatic disease; | |
| Others : 1219164 DOI : 10.1186/s12864-015-1642-x |
|
| received in 2015-02-18, accepted in 2015-05-19, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
MetastamiRs have momentous clinical relevance and have been correlated with disease progression in many tumors. In this study, we identified neuroblastoma metastamiRs exploiting unique mouse models of favorable and high-risk metastatic human neuroblastoma. Further, we related their deregulation to the modulation of target proteins and established their association with clinical outcomes.
Results
Whole genome miRNA microarray analysis identified 74 metastamiRs across the manifold of metastatic tumors. RT-qPCR on select miRNAs validated profile expression. Results from bio-informatics across the ingenuity pathway, miRCancer, and literature data-mining endorsed the expression of these miRNAs in multiple tumor systems and showed their role in metastasis, identifying them as metastamiRs. Immunoblotting and TMA-IHC analyses revealed alterations in the expression/phosphorylation of metastamiRs’ targets, including ADAMTS-1, AKT1/2/3, ASK1, AURKβ, Birc1, Birc2, Bric5, β-CATENIN, CASP8, CD54, CDK4, CREB, CTGF, CXCR4, CYCLIN-D1, EGFR, ELK1, ESR1, CFOS, FOSB, FRA, GRB10, GSK3β, IL1α, JUND, kRAS, KRTAP1, MCP1, MEGF10, MMP2, MMP3, MMP9, MMP10, MTA2, MYB, cMYC, NF2, NOS3, P21, pP38, PTPN3, CLEAVED PARP, PKC, SDF-1β, SEMA3D, SELE, STAT3, TLR3, TNFα, TNFR1, and VEGF in aggressive cells ex vivo and in a manifold of metastatic tumors in vivo. miRNA mimic (hsa-miR-125b, hsa-miR-27b, hsa-miR-93, hsa-miR-20a) and inhibitor (hsa-miR-1224-3p, hsa-miR-1260) approach for select miRNAs revealed the direct influence of the altered metastamiRs in the regulation of identified protein targets. Clinical outcome association analysis with the validated metastamiRs’ targets corresponded strongly with poor overall and relapse-free survival.
Conclusions
For the first time, these results identified a comprehensive list of neuroblastoma metastamiRs, related their deregulation to altered expression of protein targets, and established their association with poor clinical outcomes. The identified set of distinctive neuroblastoma metastamiRs could serve as potential candidates for diagnostic markers for the switch from favorable to high-risk metastatic disease.
【 授权许可】
2015 Khan et al.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150715085523670.pdf | 3504KB | ||
| Fig. 6. | 160KB | Image | |
| Fig. 5. | 118KB | Image | |
| Fig. 4. | 142KB | Image | |
| Fig. 3. | 103KB | Image | |
| Fig. 2. | 112KB | Image | |
| Fig. 1. | 184KB | Image |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
【 参考文献 】
- [1]Marc TG, Gurney. JG, Smith. MA, Olshan. AF: Sympathetic Nervous System Tumors. Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995, National Cancer Institute, Bethesda, MD 1999, NIH Pub. No. 99-4649(ICCC IV):65–72.
- [2]Gurney. JG, Smith. MA, Ross. JA: Cancer Among Infants. Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995, National Cancer Institute, Bethesda, MD 1999, NIH Pub. No. 99–4649 (XII):149–156
- [3]Morgenstern DA, Baruchel S, Irwin MS. Current and future strategies for relapsed neuroblastoma: challenges on the road to precision therapy. J Pediatr Hematol Oncol. 2013; 35(5):337-47.
- [4]American-Cancer-Society.: Cancer Facts & Figures Atlanta: American Cancer Society 2015:1–56
- [5]Smith MA, Seibel NL, Altekruse SF, Ries LA, Melbert DL, O’Leary M et al.. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol. 2010; 28(15):2625-34.
- [6]Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet. 2007; 369(9579):2106-20.
- [7]Matthay KK, Reynolds CP, Seeger RC, Shimada H, Adkins ES, Haas-Kogan D et al.. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children’s oncology group study. J Clin Oncol. 2009; 27(7):1007-13.
- [8]Cole KA, Maris JM. New strategies in refractory and recurrent neuroblastoma: translational opportunities to impact patient outcome. Clin Cancer Res. 2012; 18(9):2423-8.
- [9]Santana VM, Furman WL, McGregor LM, Billups CA. Disease control intervals in high-risk neuroblastoma. Cancer. 2008; 112(12):2796-801.
- [10]Simon T, Berthold F, Borkhardt A, Kremens B, De Carolis B, Hero B. Treatment and outcomes of patients with relapsed, high-risk neuroblastoma: results of German trials. Pediatr Blood Cancer. 2011; 56(4):578-83.
- [11]Lau L, Tai D, Weitzman S, Grant R, Baruchel S, Malkin D. Factors influencing survival in children with recurrent neuroblastoma. J Pediatr Hematol Oncol. 2004; 26(4):227-32.
- [12]Berthold F, Hero B, Breu H, Christiansen H, Erttmann R, Gnekow A et al.. The recurrence patterns of stages I, II and III neuroblastoma: experience with 77 relapsing patients. Ann Oncol. 1996; 7(2):183-7.
- [13]Garaventa A, Parodi S, De Bernardi B, Dau D, Manzitti C, Conte M et al.. Outcome of children with neuroblastoma after progression or relapse A retrospective study of the Italian neuroblastoma registry. Eur J Cancer. 2009; 45(16):2835-42.
- [14]Weiss B, Vora A, Huberty J, Hawkins RA, Matthay KK. Secondary myelodysplastic syndrome and leukemia following 131I-metaiodobenzylguanidine therapy for relapsed neuroblastoma. J Pediatr Hematol Oncol. 2003; 25(7):543-7.
- [15]London WB, Castel V, Monclair T, Ambros PF, Pearson AD, Cohn SL et al.. Clinical and biologic features predictive of survival after relapse of neuroblastoma: a report from the International Neuroblastoma Risk Group project. J Clin Oncol. 2011; 29(24):3286-92.
- [16]Christofori G. New signals from the invasive front. Nature. 2006; 441(7092):444-50.
- [17]Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006; 127(4):679-95.
- [18]Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJ et al.. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci U S A. 2003; 100(13):7737-42.
- [19]Kratimenos P, Koutroulis I, Marconi D, Syriopoulou V, Delivoria-Papadopoulos M, Chrousos GP, Theocharis S: Multi-targeted molecular therapeutic approach in aggressive neuroblastoma: the effect of Focal Adhesion Kinase-Src-Paxillin system. Expert opinion on therapeutic targets 2014;18(12):1395–406
- [20]Li Y, Li W, Zhang JG, Li HY, Li YM: Downregulation of tumor suppressor menin by miR-421 promotes proliferation and migration of neuroblastoma. Tumour biology. 2014;35(10):10011–7.
- [21]Morgenstern DA, London WB, Stephens D, Volchenboum SL, Hero B, Di Cataldo A et al.. Metastatic neuroblastoma confined to distant lymph nodes (stage 4 N) predicts outcome in patients with stage 4 disease: A study from the International Neuroblastoma Risk Group Database. J Clin Oncol. 2014; 32(12):1228-35.
- [22]Cheng L, Yang T, Kuang Y, Kong B, Yu S, Shu H et al.. MicroRNA-23a promotes neuroblastoma cell metastasis by targeting CDH1. Oncology letters. 2014; 7(3):839-45.
- [23]Li Y, Wang H, Li J, Yue W. MiR-181c modulates the proliferation, migration, and invasion of neuroblastoma cells by targeting Smad7. Acta Biochim Biophys Sin. 2014; 46(1):48-55.
- [24]Hurst DR, Edmonds MD, Welch DR. Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res. 2009; 69(19):7495-8.
- [25]Bell E, Chen L, Liu T, Marshall GM, Lunec J, Tweddle DA. MYCN oncoprotein targets and their therapeutic potential. Cancer Lett. 2010; 293(2):144-57.
- [26]Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010; 362(23):2202-11.
- [27]Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY et al.. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med. 1985; 313(18):1111-6.
- [28]Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984; 224(4653):1121-4.
- [29]Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 2003; 3(3):203-16.
- [30]Brodeur GM, Bagatell R. Mechanisms of neuroblastoma regression. Nat Rev Clin Oncol. 2014; 11(12):704-13.
- [31]Molenaar JJ, Koster J, Zwijnenburg DA, van Sluis P, Valentijn LJ, van der Ploeg I et al.. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature. 2012; 483(7391):589-93.
- [32]Hogarty MD, Maris JM. PI3King on MYCN to improve neuroblastoma therapeutics. Cancer Cell. 2012; 21(2):145-7.
- [33]Cohn SL, Tweddle DA. MYCN amplification remains prognostically strong 20 years after its “clinical debut”. Eur J Cancer. 2004; 40(18):2639-42.
- [34]Kawa K, Ohnuma N, Kaneko M, Yamamoto K, Etoh T, Mugishima H et al.. Long-term survivors of advanced neuroblastoma with MYCN amplification: A report of 19 patients surviving disease-free for more than 66 months. J Clin Oncol. 1999; 17(10):3216-20.
- [35]Cohn SL, London WB, Huang D, Katzenstein HM, Salwen HR, Reinhart T et al.. MYCN expression is not prognostic of adverse outcome in advanced-stage neuroblastoma with nonamplified MYCN. J Clin Oncol. 2000; 18(21):3604-13.
- [36]Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116(2):281-97.
- [37]Bottai G, Pasculli B, Calin GA, Santarpia L: Targeting the microRNA-regulating DNA damage/repair pathways in cancer. Expert opin biol ther 2014;14(11):1667–83
- [38]Chen Y, Liu XR, Yin YQ, Lee CJ, Wang FT, Liu HQ et al.. Unravelling the multifaceted roles of Atg proteins to improve cancer therapy. Cell Prolif. 2014; 47(2):105-12.
- [39]Fu J, Xu X, Kang L, Zhou L, Wang S, Lu J et al.. Biochem Biophys Res Commun. 2014; 445(2):314-319.
- [40]Elzein S, Goodyer CG. Regulation of Human Growth Hormone Receptor Expression by MicroRNAs. Mol Endocrinol. 2014; 28(9):1448-59.
- [41]Liu F, Lv Q, Du WW, Li H, Yang X, Liu D et al.. Specificity of miR-378a-5p targeting rodent fibronectin. Biochim Biophys Acta. 2013; 1833(12):3272-85.
- [42]Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005; 6(5):376-85.
- [43]Cheung IY, Farazi TA, Ostrovnaya I, Xu H, Tran H, Mihailovic A et al.. Deep MicroRNA sequencing reveals downregulation of miR-29a in neuroblastoma central nervous system metastasis. Genes Chromosomes Cancer. 2014; 53(10):803-14.
- [44]Gonzalez-Nunez V, Noriega-Prieto JA, Rodriguez RE. Morphine modulates cell proliferation through mir133b &mir128 in the neuroblastoma SH-SY5Y cell line. Biochim Biophys Acta. 2014; 1842(4):566-72.
- [45]Chen X, Pan M, Han L, Lu H, Hao X, Dong Q. miR-338-3p suppresses neuroblastoma proliferation, invasion and migration through targeting PREX2a. FEBS Lett. 2013; 587(22):3729-37.
- [46]Qiao J, Lee S, Paul P, Theiss L, Tiao J, Qiao L et al.. miR-335 and miR-363 regulation of neuroblastoma tumorigenesis and metastasis. Surgery. 2013; 154(2):226-33.
- [47]Ye J, Wu X, Wu D, Wu P, Ni C, Zhang Z et al.. miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS One. 2013; 8(4):e60687.
- [48]Zhang H, Pu J, Qi T, Qi M, Yang C, Li S et al.. MicroRNA-145 inhibits the growth, invasion, metastasis and angiogenesis of neuroblastoma cells through targeting hypoxia-inducible factor 2 alpha. Oncogene. 2014; 33(3):387-97.
- [49]Xin C, Buhe B, Hongting L, Chuanmin Y, Xiwei H, Hong Z et al.. MicroRNA-15a promotes neuroblastoma migration by targeting reversion-inducing cysteine-rich protein with Kazal motifs (RECK) and regulating matrix metalloproteinase-9 expression. FEBS J. 2013; 280(3):855-66.
- [50]Zhang H, Qi M, Li S, Qi T, Mei H, Huang K et al.. microRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells. Mol Cancer Ther. 2012; 11(7):1454-66.
- [51]Meseguer S, Mudduluru G, Escamilla JM, Allgayer H, Barettino D. MicroRNAs-10a and -10b contribute to retinoic acid-induced differentiation of neuroblastoma cells and target the alternative splicing regulatory factor SFRS1 (SF2/ASF). J Biol Chem. 2011; 286(6):4150-64.
- [52]Kovalevich J, Langford D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol. 2013; 1078:9-21.
- [53]Aravindan S, Natarajan M, Awasthi V, Herman TS, Aravindan N. Novel synthetic monoketone transmute radiation-triggered NFkappaB-dependent TNFalpha cross-signaling feedback maintained NFkappaB and favors neuroblastoma regression. PLoS One. 2013; 8(8):e72464.
- [54]Veeraraghavan J, Natarajan M, Aravindan S, Herman TS, Aravindan N. Radiation-triggered tumor necrosis factor (TNF) alpha-NFkappaB cross-signaling favors survival advantage in human neuroblastoma cells. J Biol Chem. 2011; 286(24):21588-600.
- [55]Chen X, Zhu Y, Han L, Lu H, Hao X, Dong Q. Chemokine receptor 4 gene silencing blocks neuroblastoma metastasis in vitro. Neural Regeneration Res. 2014; 9(10):1063-7.
- [56]Tian X, Hou W, Bai S, Fan J, Tong H, Xu H. XAV939 inhibits the stemness and migration of neuroblastoma cancer stem cells via repression of tankyrase 1. Int J Oncol. 2014; 45(1):121-8.
- [57]Feduska JM, Aller SG, Garcia PL, Cramer SL, Council LN, van Waardenburg RC, Yoon KJ: ICAM-2 confers a non-metastatic phenotype in neuroblastoma cells by interaction with alpha-actinin. Oncogene 2015;34(12):1553–62.
- [58]Schwankhaus N, Gathmann C, Wicklein D, Riecken K, Schumacher U, Valentiner U: Cell adhesion molecules in metastatic neuroblastoma models. Clinical & experimental metastasis 2014;31(4):483–496.
- [59]Guo J, Dong Q, Fang Z, Chen X, Lu H, Wang K et al.. Identification of miRNAs that are associated with tumor metastasis in neuroblastoma. Cancer Biol Ther. 2010; 9(6):446-52.
- [60]Almeida MI, Reis RM, Calin GA. MicroRNAs and metastases–the neuroblastoma link. Cancer Biol Ther. 2010; 9(6):453-4.
- [61]Khew-Goodall Y, Goodall GJ. Myc-modulated miR-9 makes more metastases. Nat Cell Biol. 2010; 12(3):209-11.
- [62]Natarajan M, Aravindan N, Meltz ML, Herman TS. Post-translational modification of I-kappa B alpha activates NF-kappa B in human monocytes exposed to 56Fe ions. Radiat Environ Biophys. 2002; 41(2):139-44.
PDF