期刊论文详细信息
BMC Microbiology
Production, purification, sequencing and activity spectra of mutacins D-123.1 and F-59.1
Marc C Lavoie2  Gisèle LaPointe1  Guillaume G Nicolas1 
[1]Centre de Recherche en Sciences et Technologie du Lait (STELA), Institut des Nutraceutiques et des Aliments Fonctionnels (INAF), Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec (Québec), G1V 0A6, Canada
[2]Department of Biological and Chemical Sciences, Faculty of Pure and Applied Sciences, The University of the West Indies, Cave Hill Campus, P.O. Box 64 Bridgetown, BB11000, Barbados
关键词: Streptococcus mutans;    pediocin;    mutacin;    lantibiotic;    bacteriocin;   
Others  :  1225268
DOI  :  10.1186/1471-2180-11-69
 received in 2010-09-29, accepted in 2011-04-10,  发布年份 2011
PDF
【 摘 要 】

Background

The increase in bacterial resistance to antibiotics impels the development of new anti-bacterial substances. Mutacins (bacteriocins) are small antibacterial peptides produced by Streptococcus mutans showing activity against bacterial pathogens. The objective of the study was to produce and characterise additional mutacins in order to find new useful antibacterial substances.

Results

Mutacin F-59.1 was produced in liquid media by S. mutans 59.1 while production of mutacin D-123.1 by S. mutans 123.1 was obtained in semi-solid media. Mutacins were purified by hydrophobic chromatography. The amino acid sequences of the mutacins were obtained by Edman degradation and their molecular mass was determined by mass spectrometry. Mutacin F-59.1 consists of 25 amino acids, containing the YGNGV consensus sequence of pediocin-like bacteriocins with a molecular mass calculated at 2719 Da. Mutacin D-123.1 has an identical molecular mass (2364 Da) with the same first 9 amino acids as mutacin I. Mutacins D-123.1 and F-59.1 have wide activity spectra inhibiting human and food-borne pathogens. The lantibiotic mutacin D-123.1 possesses a broader activity spectrum than mutacin F-59.1 against the bacterial strains tested.

Conclusion

Mutacin F-59.1 is the first pediocin-like bacteriocin identified and characterised that is produced by Streptococcus mutans. Mutacin D-123.1 appears to be identical to mutacin I previously identified in different strains of S. mutans.

【 授权许可】

   
2011 Nicolas et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150919044441935.pdf 589KB PDF download
Figure 6. 14KB Image download
Figure 5. 13KB Image download
Figure 4. 12KB Image download
Figure 3. 39KB Image download
Figure 2. 23KB Image download
Figure 1. 26KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Fischbach MA, Walsh CT: Antibiotics for emerging pathogens. Science 2009, 325:1089-1093.
  • [2]Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H: The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 2006, 70:5 64-82.
  • [3]Smith L, Hillman JD: Therapeutic potential of type A (I) lantibiotics, a group of cationic peptide antibiotics. Curr Opin Microbiol 2008, 11:401-408.
  • [4]Jack RW, Tagg RJ, Ray B: Bacteriocins of Gram-positive bacteria. Microbiol Rev 1995, 59:171-200.
  • [5]Asaduzzaman SM, Sonomoto K: Lantibiotics: diverse activities and unique modes of action. J Biosci Bioeng 2009, 107:475-487.
  • [6]Nicolas GG, Lavoie MC, Lapointe G: Molecular genetics, genomics and biochemistry of mutacins. Genes, Genomes and Genomics 2007, 1:193-208.
  • [7]Mota-Meira M, LaPointe G, Lacroix C, Lavoie MC: MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob Agents Chemother 2000, 44:24-29.
  • [8]Morency H, Mota-Meira M, LaPointe G, Lacroix C, Lavoie MC: Comparison of the activity spectra against pathogens of bacterial strains producing a mutacin or a lantibiotic. Can J Microbiol 2001, 47:322-331.
  • [9]Mota-Meira M, Morency H, Lavoie MC: In vivo activity of mutacin B-Ny266. J Antimicrob Chemother 2005, 56:869-871.
  • [10]Nicolas GG, Mota-Meira M, Lapointe G, Lavoie MC: Mutacins and their potential use in food preservation. Food 2007, 1:161-171.
  • [11]Morency H, Trahan L, Lavoie MC: Preliminary grouping of mutacins. Can J Microbiol 1995, 41:826-831.
  • [12]Bekal-Si Ali S, Hurtubise Y, Lavoie MC, LaPointe G: Diversity of Streptococcus mutans bacteriocins as confirmed by DNA analysis using specific molecular probes. Gene 2002, 283:125-131.
  • [13]Fimland G, Johnsen L, Dalhus B, Nissen-Meyer J: Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J Pept Sci 2005, 11:688-696.
  • [14]Nicolas G, Auger I, Beaudoin M, Halle F, Morency H, LaPointe G, Lavoie MC: Improved methods for mutacin detection and production. J Microbiol Methods 2004, 59:351-361.
  • [15]Nicolas G, Morency H, LaPointe G, Lavoie MC: Mutacin H-29B is identical to mutacin II (J-T8). BMC Microbiol 2006, 6:36. BioMed Central Full Text
  • [16]Hillman JD, Novak J, Sagura E, Gutierrez JA, Brooks TA, Crowley PJ, Hess M, Azizi A, Leung KP, Cvitkovitch D, Bleiweis AS: Genetic and biochemical analysis of mutacin 1140, a lantibiotic from Streptococcus mutans. Infect Immun 1998, 66:2743-2749.
  • [17]Ajdic D, McShan WM, McLaughlin RE, Savic G, Chang J, Carson MB, Primeaux C, Tian R, Kenton S, Jia H, Lin S, Qian Y, Li S, Zhu H, Najar F, Lai H, White J, Roe BA, Ferretti JJ: Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci USA 2002, 99:14434-14439.
  • [18]Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ: MEROPS: the peptidase database. Nucleic Acids Res 2008, 36:D320-D325.
  • [19]Bhunia AK, Johnson MC, Ray B: Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. J Appl Bacteriol 1988, 65:261-268.
  • [20]Salvucci E, Saavedra L, Sesma F: Short peptides derived from the NH2-terminus of subclass IIa bacteriocin enterocin CRL35 show antibacterial activity. J Antimicrob Chemother 2007, 59:1102-1108.
  • [21]Torrent M, Nogués VM, Boix E: A theoretical approach to spot active regions in antimicrobial proteins. BMC Bioinformatics 2009, 10:373. BioMed Central Full Text
  • [22]Johnsen L, Fimland G, Nissen-Meyer J: The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. J Biol Chem 2005, 280:9243-9250.
  • [23]Uteng M, Hauge HH, Markwick PR, Fimland G, Mantzilas D, Nissen-Meyer J, Muhle-Goll C: Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry 2003, 42:11417-11426.
  • [24]Gaussier H, Lavoie M, Subirade M: Conformational changes of pediocin in an aqueous medium monitored by Fourier transform infrared spectroscopy: a biological implication. Int J Biol Macromol 2003, 32:1-9.
  • [25]Qi F, Chen P, Caufield PW: Purification and biochemical characterization of mutacin I from group I strain of Streptococcus mutans, CH43, and genetic analysis of mutacin I biosynthesis genes. Appl Environ Microbiol 2000, 66:3221-3229.
  • [26]Meyer HE, Heber M, Eisermann B, Korte H, Metzger JW, Jung G: Sequence analysis of lantibiotics: chemical derivatization procedures allow a fast access to complete Edman degradation. Anal Biochem 1994, 223:185-190.
  • [27]Qi F, Chen P, Caufield PW: The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 2001, 67:15-21.
  • [28]Ennahar S, Deschamps N, Richard J: Natural variation in susceptibility of Listeria strains to class IIa bacteriocins. Curr Microbiol 2000, 41:1-4.
  • [29]Tessema GT, Moretro T, Kholer A, Axelsson L, Naterstad K: Complex phenotypic and genotypic response of Listeria monocytogenes strains exposed to the class IIa bacteriocin sakacin P. Appl Environ Microbiol 2009, 75:6973-6980.
  • [30]Vadyvaloo V, Arous S, Gravesen A, Héchard Y, Chauhan-Haubrock R, Hastings JW, Rautenbach M: Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains. Microbiology 2004, 150:3025-3033.
  • [31]Arous S, Dalet K, Héchard Y: Involvement of the mpo operon in resistance to class IIa bacteriocins in Listeria monocytogenes. FEMS Microbiol Lett 2004, 238:37-41.
  • [32]Mazzotta AS, Montville TJ: Nisin induces changes in membrane fatty acid composition of Listeria monocytogenes nisin-resistant strains at 10°C and 30°C. Appl Environ Microbiol 1997, 82:32-38.
  • [33]Garde S, Avila M, Medina M, Nunez M: Fast induction of nisin resistance in Streptococcus thermophilus INIA 463 during growth in milk. Int J Food Microbiol 2004, 96:165-172.
  • [34]Hasper HE, Kramer NE, Smith JL, Hillman JD, Zachariah C, Kuipers OP, de Kruijff B, Breukink E: An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science 2006, 313:1636-1637.
  • [35]Kamiya RU, Höpfling JF, Gonçalves RB: Frequency and expression of mutacin biosynthesis genes in isolates of Streptococcus mutans with different mutacin-producing phenotypes. J Med Microbiol 2008, 57:626-635.
  • [36]Maruyama F, Kobata M, Kurokawa K, Nishida K, Sakurai A, Nakano K, Nomura R, Kawabata S, Ooshima T, Nakai K, Hattori M, Hamada S, Nakagawa I: Comparative genomic analysis of Streptococcus mutans provide insights into chromosomal shuffling and species-specific content. BMC Genomics 2009, 10:358. BioMed Central Full Text
  • [37]Heng NC, Burtenshaw GA, Jack RW, Tagg JR: Ubericin A, a class IIa bacteriocin produced by Streptococcus uberis. Appl Environ Microbiol 2007, 73:7763-7766.
  • [38]Waterhouse JC, Russell RR: Dispensable genes and foreign DNA in Streptococcus mutans. Microbiology 2006, 152:1777-1788.
  • [39]Mota-Meira M, Lacroix C, LaPointe G, Lavoie MC: Purification and structure of the mutacin B-Ny266: a new lantibiotic produced by Streptococcus mutans. FEBS Letters 1997, 410:275-279.
  • [40]Morency H, Lavoie MC, Subirade M: Replacement of trifluoroacetic acid with HCl in the hydrophobic purification steps of pediocin PA-1: a structural effect. Appl Environ Microbiol 2002, 68:4803-4808.
  • [41]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [42]Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A: Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook. Edited by John M Walker. Humana Press; 2005:571-607.
  • [43]Cheng J, Randall A, Sweredoski M, Baldi P: SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 2005, (33 web server):w72-76.
  • [44]Motlagh AM, Bhunia AK, Szostek F, Hansen TR, Johnson MC, Ray B: Nucleotide and amino acid sequence of pap-gene (pediocin AcH production) in Pediococcus acidilactici H. Lett Appl Microbiol 1992, 15:45-48.
  • [45]Nieto Lozano JC, Meyer JN, Sletten K, Pelaz C, Nes IF: Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. J Gen Microbiol 1992, 138:1985-1990.
  • [46]Le Marrec C, Hyronimus B, Bressollier P, Verneuil B, Urdaci MC: Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I(4). Appl Environ Microbiol 2000, 66:5213-5220.
  • [47]Van Reenen CA, Chikindas ML, Van Zyl WH, Dicks LM: Characterization and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiae. Int J Food Microbiol 2003, 81:29-40.
  • [48]Tichaczek PS, Vogel RF, Hammes WP: Cloning and sequencing of sakP encoding sakacin P, the bacteriocin produced by Lactobacillus sake LTH 673. Microbiology 1994, 140:361-367.
  • [49]Larsen AG, Vogensen FK, Josephsen J: Antimicrobial activity of lactic acid bacteria isolated from sourdoughs: purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. J Appl Bacteriol 1993, 75:113-122.
  • [50]Loch TP, Xu W, Fitzgerald SM, Faisal M: Isolation of a Carnobacterium maltaromaticum- like bacterium from systemically infected lake whitefish (Coregonus clupeaformis). FEMS Microbiol Lett 2008, 288:76-84.
  • [51]Kawamoto S, Shima J, Sato R, Eguchi T, Ohmomo S, Shibato J, Horikoshi N, Takeshita K, Sameshima T: Biochemical and genetic characterization of mundticin KS, an antilisterial peptide produced by Enterococcus mundtii NFRI 7393. Appl Environ Microbiol 2002, 68:3830-3840.
  • [52]Farías ME, Farías RN, de Ruiz Holgado AP, Sesma F: Purification and N-terminal amino acid sequence of Enterocin CRL 35, a 'pediocin-like' bacteriocin produced by Enterococcus faecium CRL 35. Lett Appl Microbiol 1996, 22:417-419.
  文献评价指标  
  下载次数:39次 浏览次数:14次