期刊论文详细信息
BMC Neuroscience
Pre-attentive modulation of brain responses to tones in coloured-hearing synesthetes
Stefan Elmer1  Martin Meyer2  Lars Rogenmoser1  Lutz Jäncke2 
[1] Division Neuropsychology, Institute of Psychology, University of Zurich, Binzmühlestrasse 14/25, Zurich CH-8050, Switzerland;Research Unit “Plasticity and learning in the aging brain”, University of Zurich, Zurich, Switzerland
关键词: Auditory cortex;    Mismatch negativity;    EEG;    Crossmodal integration;    Coloured-hearing synesthesia;   
Others  :  1140692
DOI  :  10.1186/1471-2202-13-151
 received in 2012-08-06, accepted in 2012-11-29,  发布年份 2012
PDF
【 摘 要 】

Background

Coloured-hearing (CH) synesthesia is a perceptual phenomenon in which an acoustic stimulus (the inducer) initiates a concurrent colour perception (the concurrent). Individuals with CH synesthesia "see" colours when hearing tones, words, or music; this specific phenomenon suggesting a close relationship between auditory and visual representations. To date, it is still unknown whether the perception of colours is associated with a modulation of brain functions in the inducing brain area, namely in the auditory-related cortex and associated brain areas. In addition, there is an on-going debate as to whether attention to the inducer is necessarily required for eliciting a visual concurrent, or whether the latter can emerge in a pre-attentive fashion.

Results

By using the EEG technique in the context of a pre-attentive mismatch negativity (MMN) paradigm, we show that the binding of tones and colours in CH synesthetes is associated with increased MMN amplitudes in response to deviant tones supposed to induce novel concurrent colour perceptions. Most notably, the increased MMN amplitudes we revealed in the CH synesthetes were associated with stronger intracerebral current densities originating from the auditory cortex, parietal cortex, and ventral visual areas.

Conclusions

The automatic binding of tones and colours in CH synesthetes is accompanied by an early pre-attentive process recruiting the auditory cortex, inferior and superior parietal lobules, as well as ventral occipital areas.

【 授权许可】

   
2012 Jäncke et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325090605256.pdf 1678KB PDF download
Figure 7. 125KB Image download
Figure 6. 105KB Image download
Figure 5. 51KB Image download
Figure 4. 47KB Image download
Figure 3. 86KB Image download
Figure 2. 85KB Image download
Figure 1. 63KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Beeli G, Esslen M, Jancke L: Time course of neural activity correlated with colored-hearing synesthesia. Cereb Cortex 2008, 18:379-385.
  • [2]Hanggi J, Beeli G, Oechslin MS, Jancke L: The multiple synaesthete E.S.: neuroanatomical basis of interval-taste and tone-colour synaesthesia. Neuroimage 2008, 43:192-203.
  • [3]Neufeld J, Sinke C, Dillo W, Emrich HM, Szycik GR, Dima D, Bleich S, Zedler M: The neural correlates of coloured music: a functional MRI investigation of auditory-visual synaesthesia. Neuropsychologia 2012, 50:85-89.
  • [4]De Thornley Head P: Synaesthesia: pitch-colour isomorphism in RGB-space? Cortex 2006, 42:164-174.
  • [5]Bargary G, Mitchell KJ: Synaesthesia and cortical connectivity. Trends Neurosci 2008, 31:335-342.
  • [6]Gebuis T, Nijboer TC, Van der Smagt MJ: Multiple dimensions in bi-directional synesthesia. Eur J Neurosci 2009, 29:1703-1710.
  • [7]Meier B, Rothen N: When conditioned responses “fire back”: bidirectional cross-activation creates learning opportunities in synesthesia. Neuroscience 2007, 147:569-572.
  • [8]Hubbard EM: Neurophysiology of synesthesia. Curr Psychiatry Rep 2007, 9:193-199.
  • [9]Armel KC, Ramachandran VS: Acquired Synesthesia in Retinitis Pigmentosa. Neurocase 1999, 5:293-296.
  • [10]Grossenbacher PG, Lovelace CT: Mechanisms of synesthesia: cognitive and physiological constraints. Trends Cogn Sci 2001, 5:36-41.
  • [11]Weiss PH, Fink GR: Grapheme-colour synaesthetes show increased grey matter volumes of parietal and fusiform cortex. Brain 2009, 132:65-70.
  • [12]Dovern A, Fink GR, Fromme AC, Wohlschlager AM, Weiss PH, Riedl V: Intrinsic network connectivity reflects consistency of synesthetic experiences. J Neurosci 2012, 32:7614-7621.
  • [13]Jancke L, Langer N: A strong parietal hub in the small-world network of coloured-hearing synaesthetes during resting state EEG. J Neuropsychol 2011, 5:178-202.
  • [14]Hanggi J, Wotruba D, Jancke L: Globally altered structural brain network topology in grapheme-color synesthesia. J Neurosci 2011, 31:5816-5828.
  • [15]Neufeld J, Sinke C, Zedler M, Dillo W, Emrich HM, Bleich S, Szycik GR: Disinhibited feedback as a cause of synesthesia: evidence from a functional connectivity study on auditory-visual synesthetes. Neuropsychologia 2012, 50:1471-1477.
  • [16]Laeng B, Hugdahl K, Specht K: The neural correlate of colour distances revealed with competing synaesthetic and real colours. Cortex 2011, 47:320-331.
  • [17]Rouw R, Scholte HS: Neural basis of individual differences in synesthetic experiences. J Neurosci 2010, 30:6205-6213.
  • [18]Specht K, Laeng B: An independent component analysis of fMRI data of grapheme-colour synaesthesia. J Neuropsychol 2011, 5:203-213.
  • [19]Brang D, Hubbard EM, Coulson S, Huang M, Ramachandran VS: Magnetoencephalography reveals early activation of V4 in grapheme-color synesthesia. Neuroimage 2010, 53:268-274.
  • [20]van Atteveldt N, Formisano E, Goebel R, Blomert L: Integration of letters and speech sounds in the human brain. Neuron 2004, 43:271-282.
  • [21]Foxe JJ, Schroeder CE: The case for feedforward multisensory convergence during early cortical processing. Neuroreport 2005, 16:419-423.
  • [22]Colin C, Radeau M, Soquet A, Demolin D, Colin F, Deltenre P: Mismatch negativity evoked by the McGurk-MacDonald effect: a phonetic representation within short-term memory. Clin Neurophysiol 2002, 113:495-506.
  • [23]Kislyuk DS, Mottonen R, Sams M: Visual processing affects the neural basis of auditory discrimination. J Cogn Neurosci 2008, 20:2175-2184.
  • [24]Saint-Amour D, De Sanctis P, Molholm S, Ritter W, Foxe JJ: Seeing voices: High-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion. Neuropsychologia 2007, 45:587-597.
  • [25]Froyen D, Willems G, Blomert L: Evidence for a specific cross-modal association deficit in dyslexia: an electrophysiological study of letter-speech sound processing. Dev Sci 2011, 14:635-648.
  • [26]Alho K: Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear Hear 1995, 16:38-51.
  • [27]Giard MH, Peronnet F: Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. J Cogn Neurosci 1999, 11:473-490.
  • [28]Marco-Pallares J, Grau C, Ruffini G: Combined ICA-LORETA analysis of mismatch negativity. Neuroimage 2005, 25:471-477.
  • [29]Naatanen R, Astikainen P, Ruusuvirta T, Huotilainen M: Automatic auditory intelligence: an expression of the sensory-cognitive core of cognitive processes. Brain Res Rev 2010, 64:123-136.
  • [30]Naatanen R: Mismatch negativity (MMN) as an index of central auditory system plasticity. Int J Audiol 2008, 47(Suppl 2):S16-S20.
  • [31]Nikolic D, Jurgens UM, Rothen N, Meier B, Mroczko A: Swimming-style synesthesia. Cortex 2011, 47:874-879.
  • [32]Ramachandran VS, Hubbard EM: Psychophysical investigations into the neural basis of synaesthesia. Proc Biol Sci 2001, 268:979-983.
  • [33]Oechslin MS, Imfeld A, Loenneker T, Meyer M, Jancke L: The plasticity of the superior longitudinal fasciculus as a function of musical expertise: a diffusion tensor imaging study. Neuroscience: Frontiers in Human; 2010:4.
  • [34]Eagleman DM, Kagan AD, Nelson SS, Sagaram D, Sarma AK: A standardized test battery for the study of synesthesia. J Neurosci Methods 2007, 159:139-145.
  • [35]Gaschler-Markefski B, Szycik GR, Sinke C, Neufeld J, Schneider U, Baumgart F, Dierks O, Stiegemann U, Scheich H, Emrich HM, Zedler M: Anomalous auditory cortex activations in colored hearing synaesthetes: An fMRI-Study. Seeing Perceiving 2011, 24:391-405.
  • [36]Goller AI, Otten LJ, Ward J: Seeing sounds and hearing colors: an event-related potential study of auditory-visual synesthesia. J Cogn Neurosci 2009, 21:1869-1881.
  • [37]Calvert GA, Brammer MJ, Bullmore ET, Campbell R, Iversen SD, David AS: Response amplification in sensory-specific cortices during crossmodal binding. Neuroreport 1999, 10:2619-2623.
  • [38]Bunzeck N, Wuestenberg T, Lutz K, Heinze HJ, Jancke L: Scanning silence: mental imagery of complex sounds. Neuroimage 2005, 26:1119-1127.
  • [39]Jancke L, Shah NJ: Hearing syllables by seeing visual stimuli. Eur J Neurosci 2004, 19:2603-2608.
  • [40]Ghazanfar AA, Maier JX, Hoffman KL, Logothetis NK: Multisensory integration of dynamic faces and voices in rhesus monkey auditory cortex. J Neurosci 2005, 25:5004-5012.
  • [41]Schroeder CE, Foxe JJ: The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex. Brain Res Cogn Brain Res 2002, 14:187-198.
  • [42]Bizley JK, King AJ: Visual-auditory spatial processing in auditory cortical neurons. Brain Res 2008, 1242:24-36.
  • [43]Beauchamp MS, Ro T: Neural substrates of sound-touch synesthesia after a thalamic lesion. J Neurosci 2008, 28:13696-13702.
  • [44]Brosch M, Selezneva E, Scheich H: Nonauditory events of a behavioral procedure activate auditory cortex of highly trained monkeys. J Neurosci 2005, 25:6797-6806.
  • [45]Nunn JA, Gregory LJ, Brammer M, Williams SC, Parslow DM, Morgan MJ, Morris RG, Bullmore ET, Baron-Cohen S, Gray JA: Functional magnetic resonance imaging of synesthesia: activation of V4/V8 by spoken words. Nat Neurosci 2002, 5:371-375.
  • [46]Paulesu E, Harrison J, Baron-Cohen S, Watson JD, Goldstein L, Heather J, Frackowiak RS, Frith CD: The physiology of coloured hearing. A PET activation study of colour-word synaesthesia. Brain 1995, 118:661-676.
  • [47]Rizzo M, Eslinger PJ: Colored hearing synesthesia: an investigation of neural factors. Neurology 1989, 39:781-784.
  • [48]Jancke L, Shah NJ, Posse S, Grosse-Ryuken M, Muller-Gartner HW: Intensity coding of auditory stimuli: an fMRI study. Neuropsychologia 1998, 36:875-883.
  • [49]Shah NJ, Jancke L, Grosse-Ruyken ML, Muller-Gartner HW: Influence of acoustic masking noise in fMRI of the auditory cortex during phonetic discrimination. J Magn Reson Imaging 1999, 9:19-25.
  • [50]Thaerig S, Behne N, Schadow J, Lenz D, Scheich H, Brechmann A, Herrmann CS: Sound level dependence of auditory evoked potentials: simultaneous EEG recording and low-noise fMRI. Int J Psychophysiol 2008, 67:235-241.
  • [51]Herrmann CS, Oertel U, Wang Y, Maess B, Friederici AD: Noise affects auditory and linguistic processing differently: an MEG study. Neuroreport 2000, 11:227-229.
  • [52]Escera C, Alho K, Winkler I, Naatanen R: Neural mechanisms of involuntary attention to acoustic novelty and change. J Cogn Neurosci 1998, 10:590-604.
  • [53]Alho K, Connolly JF, Cheour M, Lehtokoski A, Huotilainen M, Virtanen J, Aulanko R, Ilmoniemi RJ: Hemispheric lateralization in preattentive processing of speech sounds. Neurosci Lett 1998, 258:9-12.
  • [54]Baudena P, Halgren E, Heit G, Clarke JM: Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalogr Clin Neurophysiol 1995, 94:251-264.
  • [55]Halgren E, Baudena P, Clarke JM, Heit G, Liegeois C, Chauvel P, Musolino A: Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. Electroencephalogr Clin Neurophysiol 1995, 94:191-220.
  • [56]Halgren E, Baudena P, Clarke JM, Heit G, Marinkovic K, Devaux B, Vignal JP, Biraben A: Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. Electroencephalogr Clin Neurophysiol 1995, 94:229-250.
  • [57]Mecklinger A, Ullsperger P: The P300 to novel and target events: a spatiotemporal dipole model analysis. Neuroreport 1995, 7:241-245.
  • [58]Oechslin MS, Meyer M, Jancke L: Absolute pitch–functional evidence of speech-relevant auditory acuity. Cereb Cortex 2010, 20:447-455.
  • [59]Senkowski D, Saint-Amour D, Kelly SP, Foxe JJ: Multisensory processing of naturalistic objects in motion: a high-density electrical mapping and source estimation study. Neuroimage 2007, 36:877-888.
  • [60]Proverbio AM, D'Aniello GE, Adorni R, Zani A: When a photograph can be heard: Vision activates the auditory cortex within 110 ms. Sci Rep 2011, 1:54.
  • [61]Calvert GA: Crossmodal processing in the human brain: Insights from functional neuroimaging studies. Cerebral Cortex 2001, 11:1110-1123.
  • [62]Giard MH: Neurophysiological mechanisms of auditory selective attention in humans. Revue de Neuropsychologie 2000, 10:535-561.
  • [63]Inui K, Okamoto H, Miki K, Gunji A, Kakigi R: Serial and parallel processing in the human auditory cortex: A magnetoencephalographic study. Cereb Cortex 2006, 1:18-30.
  • [64]Massaro DW: Speechreading: illusion or window into pattern recognition. Trends Cogn Sci 1999, 3:310-317.
  • [65]Molholm S, Sehatpour P, Mehta AD, Shpaner M, Gomez-Ramirez M, Ortigue S, Dyke JP, Schwartz TH, Foxe JJ: Audio-visual multisensory integration in superior parietal lobule revealed by human intracranial recordings. J Neurophysiol 2006, 96:721-729.
  • [66]Besle J, Bertrand O, Giard MH: Electrophysiological (EEG, sEEG, MEG) evidence for multiple audiovisual interactions in the human auditory cortex. Hear Res 2009, 258:143-151.
  • [67]Molholm S, Ritter W, Murray MM, Javitt DC, Schroeder CE, Foxe JJ: Multisensory auditory-visual interactions during early sensory processing in humans: a high-density electrical mapping study. Cogn Brain Res 2002, 14:115-128.
  • [68]Murray MM, Spierer L: Auditory spatio-temporal brain dynamics and their consequences for multisensory interactions in humans. Hear Res 2009, 258:121-133.
  • [69]Teder-Salejarvi WA, McDonald JJ, Di RF, Hillyard SA: An analysis of audio-visual crossmodal integration by means of event-related potential (ERP) recordings. Cogn Brain Res 2002, 14:106-114.
  • [70]Kayser C, Petkov CI, Augath M, Logothetis NK: Functional imaging reveals visual modulation of specific fields in auditory cortex. J Neurosci 2007, 27:1824-1835.
  • [71]Elmer S, Meyer M, Jäncke L: The spatiotemporal characteristics of elementary audiovisual speech and music processing in musically untrained subjects. Int J Psychophysiol 2012, 83:259-268.
  • [72]Fort A, Delpuech C, Pemier J, Giard MH: Early auditory-visual interactions in human cortex during nonredundant target identification. Cogn Brain Res 2002, 14:20-30.
  • [73]Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B: Voice-selective areas in human auditory cortex. Nature 2000, 403:309-312.
  • [74]Jancke L, Wustenberg T, Scheich H, Heinze HJ: Phonetic perception and the temporal cortex. Neuroimage 2002, 15:733-746.
  • [75]Jancke L, Gaab N, Wustenberg T, Scheich H, Heinze HJ: Short-term functional plasticity in the human auditory cortex: an fMRI study. Brain Res Cogn Brain Res 2001, 12:479-485.
  • [76]Lakatos P, Chen CM, O'Connell MN, Mills A, Schroeder CE: Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron 2007, 53:279-292.
  • [77]Cosmelli D, David O, Lachaux JP, Martinerie J, Garnero L, Renault B, Varela F: Waves of consciousness: ongoing cortical patterns during binocular rivalry. Neuroimage 2004, 23:128-140.
  • [78]Oldfield RC: The Assessment and Analysis of Handedness: the Edinburgh Inventory. Neuropsychologia 1971, 9:97-113.
  • [79]Gordon EE: Manual for the advanced measures of music education. 1989.
  • [80]Lehrl S, Triebig G, Fischer B: Multiple-choice vocabulary-test Mwt As A valid and short test to estimate premorbid intelligence. Acta Neurol Scand 1995, 91:335-345.
  • [81]Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V, Sejnowski TJ: Removing electroencephalographic artifacts by blind source separation. Psychophysiology 2000, 37:163-178.
  • [82]Eichele T, Nordby H, Rimol LM, Hugdahl K: Asymmetry of evoked potential latency to speech sounds predicts the ear advantage in dichotic listening. Cogn Brain Res 2005, 24:405-412.
  • [83]Holm S: A simple sequentially multiple test procedure. Scand J Stat 1979, 6:65-70.
  • [84]Meyer M, Baumann S, Jancke L: Electrical brain imaging reveals spatio-temporal dynamics of timbre perception in humans. Neuroimage 2006, 32:1510-1523.
  • [85]Nichols TE, Holmes AP: Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 2002, 15:1-25.
  • [86]Cytowic RE, Wood FB: Synesthesia. II. Psychophysical relations in the synesthesia of geometrically shaped taste and colored hearing. Brain Cogn 1982, 1:36-49.
  • [87]Smilek D, Dixon MJ, Cudahy C, Merikle PM: Synaesthetic photisms influence visual perception. J Cogn Neurosci 2001, 13:930-936.
  文献评价指标  
  下载次数:0次 浏览次数:9次