期刊论文详细信息
BMC Research Notes
Nitrogen starvation-induced transcriptome alterations and influence of transcription regulator mutants in Mycobacterium smegmatis
Andreas Burkovski4  Stephen Reid3  Sophia Sonnewald3  Fritz Titgemeyer2  Johannes Amon4  Yinhua Lu1  Nadja Jeßberger4 
[1] Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China;Fachbereich Oecotrophologie, Fachhochschule Münster, Münster, Germany;Lehrstuhl für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany;Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
关键词: OmpR/EnvZ;    Nitrogen metabolism;    Nitrogen control;    GlnR;    AmtR;   
Others  :  1140688
DOI  :  10.1186/1756-0500-6-482
 received in 2013-04-12, accepted in 2013-11-18,  发布年份 2013
PDF
【 摘 要 】

Background

As other bacteria, Mycobacterium smegmatis needs adaption mechanisms to cope with changing nitrogen sources and to survive situations of nitrogen starvation. In the study presented here, transcriptome analyses were used to characterize the response of the bacterium to nitrogen starvation and to elucidate the role of specific transcriptional regulators.

Results

In response to nitrogen deprivation, a general starvation response is induced in M. smegmatis. This includes changes in the transcription of several hundred genes encoding e.g. transport proteins, proteins involved in nitrogen metabolism and regulation, energy generation and protein turnover. The specific nitrogen-related changes at the transcriptional level depend mainly on the presence of GlnR, while the AmtR protein controls only a small number of genes.

Conclusions

M. smegmatis is able to metabolize a number of different nitrogen sources and nitrogen control in M. smegmatis is similar to control mechanisms characterized in streptomycetes, while the master regulator of nitrogen control in corynebacteria, AmtR, is plays a minor role in this regulatory network.

【 授权许可】

   
2013 Jeßberger et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325084420591.pdf 2909KB PDF download
Figure 10. 35KB Image download
Figure 9. 37KB Image download
Figure 8. 49KB Image download
Figure 7. 38KB Image download
Figure 6. 52KB Image download
Figure 5. 52KB Image download
Figure 4. 86KB Image download
Figure 3. 37KB Image download
Figure 2. 94KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Amon J, Titgemeyer F, Burkovski A: Common patterns - unique features: nitrogen metabolism and regulation in Gram-positive bacteria. FEMS Microbiol Rev 2010, 34:588-605.
  • [2]Fink D, Weissschuh N, Reuther J, Wohlleben W, Engels A: Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 2002, 46:331-347.
  • [3]Tiffert Y, Supra P, Wurm R, Wohlleben W, Wagner R, Reuther J: The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Mol Microbiol 2008, 67:861-880.
  • [4]Tiffert Y, Franz-Wachtel M, Fladerer C, Nordheim A, Reuther J, Wohlleben W, Mast Y: Proteomic analysis of the GlnR-mediated response to nitrogen limitation in Streptomyces coelicolor M145. Appl Microbiol Biotechnol 2011, 89:1149-1159.
  • [5]Reuther J, Wohlleben W: Nitrogen metabolism in Streptomyces coelicolor: transcriptional and post-translational regulation. J Mol Microbiol Biotechnol 2007, 12:139-146.
  • [6]Jakoby M, Nolden L, Meier-Wagner J, Krämer R, Burkovski A: AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum. Mol Microbiol 2000, 37:964-977.
  • [7]Nolden L, Beckers G, Burkovski A: Nitrogen assimilation in Corynebacterium diphtheriae: pathways and regulatory cascades. FEMS Microbiol Lett 2002, 208:287-293.
  • [8]Walter B, Hänßler E, Kalinowski J, Burkovski A: Nitrogen metabolism and nitrogen control in corynebacteria: variations of a common theme. J Mol Microbiol Biotechnol 2007, 12:131-138.
  • [9]Beckers G, Strösser J, Hildebrandt U, Kalinowski J, Farwick M, Krämer R, Burkovski A: Regulation of AmtR-controlled gene expression in Corynebacterium glutamicum: mechanism and characterization of the AmtR regulon. Mol Microbiol 2005, 58:580-595.
  • [10]Buchinger S, Strösser J, Rehm N, Hänßler E, Hans S, Bathe B, Schomburg D, Krämer R, Burkovski A: A combination of metabolome and transcriptome analyses reveals new targets of the Corynebacterium glutamicum nitrogen regulator AmtR. J Biotechnol 2009, 140:68-74.
  • [11]Amon J, Bräu T, Grimrath A, Hänßler E, Hasselt K, Höller M, Jeßberger N, Ott L, Szököl J, Titgemeyer F, Burkovski A: Nitrogen control in Mycobacterium smegmatis: nitrogen-dependent expression of ammonium transport and assimilation proteins depends on the OmpR-type regulator GlnR. J Bacteriol 2008, 190:7108-7106.
  • [12]Amon J, Titgemeyer F, Burkovski A: A genomic view on nitrogen metabolism and nitrogen control in mycobacteria. J Mol Microbiol Biotechnol 2009, 17:20-29.
  • [13]Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, et al.: The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003, 4:41. BioMed Central Full Text
  • [14]Silberbach M, Hüser A, Kalinowski J, Pühler A, Walter B, Krämer R, Burkovski A: DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum. J Biotechnol 2005, 119:357-367.
  • [15]Pullan ST, Chandra G, Bibb MJ, Merrick M: Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics 2011, 12:175. BioMed Central Full Text
  • [16]Ahmad S, Bhatnagar RK, Venkitasubramanian TA: Changes in the enzyme activities involved in nitrogen assimilation in Mycobacterium smegmatis under various growth conditions. Ann Inst Pasteur Microbiol 1986, 137B:231-237.
  • [17]Iwainsky H, Sehrt I: The nitrogen metabolism of mycobacteria. Z Tuberk Erkr Thoraxorg 1968, 128:145-150.
  • [18]Sritharan V, Ratledge C, Wheeler PR: Effect of homoserine on growth of Mycobacterium smegmatis: inhibition of glutamate transport by homoserine. J Gen Microbiol 1987, 133:2781-2785.
  • [19]Nolden L, Beckers G, Möckel B, Pfefferle W, Nampoothiri KM, Krämer R, Burkovski A: Urease of Corynebacterium glutamicum: organization of corresponding genes and investigation of activity. FEMS Microbiol Lett 2000, 189:305-310.
  • [20]Puskás LG, Inui M, Yukawa H: Structure of the urease operon of Corynebacterium glutamicum. DNA Seq 2000, 11:383-394. 467
  • [21]Mongodin EF, Shapir N, Daugherty SC, DeBoy RT, Emerson JB, Shvartzbeyn A, Radune D, Vamathevan J, Riggs F, Grinberg V, et al.: Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet 2006, 2:e214.
  • [22]Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S, Matsui K, Yamagishi A, Kikuchi H, Ikeo K, Gojobori T: Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 2003, 13:1572-1579.
  • [23]Gartemann KH, Abt B, Bekel T, Burger A, Engemann J, Flügel M, Gaigalat L, Goesmann A, Gräfen I, Kalinowski J, et al.: The genome sequence of the tomato-pathogenic actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 reveals a large island involved in pathogenicity. J Bacteriol 2008, 190:2138-2149.
  • [24]Bagwell CE, Bhat S, Hawkins GM, Smith BW, Biswas T, Hoover TR, Saunders E, Han CS, Tsodikov OV, Shimkets LJ: Survival in nuclear waste, extreme resistance, and potential applications gleaned from the genome sequence of Kineococcus radiotolerans SRS30216. PLoS One 2008, 3:e3878.
  • [25]Ishikawa J, Yamashita A, Mikami Y, Hoshino Y, Kurita H, Hotta K, Shiba T, Hattori M: The complete genomic sequence of Nocardia farcinica IFM 10152. Proc Natl Acad Sci USA 2004, 101:14925-14930.
  • [26]Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, et al.: Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci USA 2001, 98:12215-12220.
  • [27]Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R: The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 2005, 69:326-356.
  • [28]Silberbach M, Schäfer M, Hüser AT, Kalinowski J, Pühler A, Krämer R, Burkovski A: Adaptation of Corynebacterium glutamicum to ammonium limitation: a global analysis using transcriptome and proteome techniques. Appl Environ Microbiol 2005, 71:2391-23402.
  • [29]Deutscher J: The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 2008, 11:87-93.
  • [30]Görke B, Stülke J: Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 2008, 6:613-624.
  • [31]Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning. A Laboratory Handbook. 2nd edition. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press; 1989.
  • [32]Grant SG, Jessee J, Bloom FR, Hanahan D: Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 1990, 87:4645-4649.
  • [33]Belisle JT, Sonnenberg MG: Isolation of genomic DNA from mycobacteria. Methods Mol Biol 1998, 101:31-44.
  • [34]Stephan J, Stemmer V, Niederweis M: Consecutive gene deletions in Mycobacterium smegmatis using the yeast FLP recombinase. Gene 2004, 343:181-190.
  • [35]Stephan J, Bender J, Wolschendorf F, Hoffmann C, Roth E, Mailänder C, Engelhardt H, Niederweis M: The growth rate of Mycobacterium smegmatis depends on sufficient porin-mediated influx of nutrients. Mol Microbiol 2005, 58:714-730.
  • [36]Moreno-Paz M, Parro V: Amplification of low quantity bacterial RNA for microarray studies: time-course analysis of Leptospirillum ferrooxidans under nitrogen-fixing conditions. Environ Microbiol 2006, 8:1064-1073.
  • [37]Li R, Xie Z, Tian Y, Yang H, Chen W, You D, Liu G, Deng Z, Tan H: polR, a pathway-specific transcriptional regulatory gene, positively controls polyoxin biosynthesis in Streptomyces cacaoi subsp. asoensis. Microbiology 2009, 155:1819-1831.
  文献评价指标  
  下载次数:109次 浏览次数:9次