期刊论文详细信息
BMC Immunology
Granzyme B secretion by human memory CD4 T cells is less strictly regulated compared to memory CD8 T cells
Dorothy E Lewis3  Claudia A Kozinetz1  Miguel A Medina3  Xiaoying Yu1  Jacob Couturier3  Lin Lin2 
[1] Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA;Academy of Preventive Medicine, Shandong University, Jinan, People’s Republic of China;Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.112, Houston 77030, TX, USA
关键词: Perforin;    Memory T cells;    Granzyme B;    Flow cytometry;    ELISpot;    ELISA;   
Others  :  1077702
DOI  :  10.1186/s12865-014-0036-1
 received in 2014-02-15, accepted in 2014-09-01,  发布年份 2014
PDF
【 摘 要 】

Background

Granzyme B (GrzB) is a serine proteinase expressed by memory T cells and NK cells. Methods to measure GrzB protein usually involve intracellular (flow cytometry) and extracellular (ELISA and ELISpot) assays. CD8 T cells are the main source of GrzB during immunological reactions, but activated CD4 T cells deploy GrzB as well. Because GrzB is an important mediator of cell death, tissue pathology and disease, clarification of differences of GrzB expression and secretion between CD4 and CD8 T cells is important for understanding effector functions of these cells.

Results

Memory CD4 and memory CD8 T cells were purified from human peripheral blood of healthy donors, and production of GrzB was directly compared between memory CD4 and memory CD8 T cells from the same donors using parallel measurements of flow cytometry (intracellular GrzB), ELISpot (single cell secretion of GrzB), and ELISA (bulk extracellular GrzB). Memory CD8 T cells constitutively stored significantly more GrzB protein (~25%) compared to memory CD4 T cells as determined by flow cytometry (~3%), and this difference remained stable after 24 hrs of activation. However, measurement of extracellular GrzB by ELISA revealed that activated memory CD4 T cells secrete similar amounts of GrzB (~1,000 pg/ml by 1x105 cells/200 μl medium) compared to memory CD8 T cells (~600 pg/ml). Measurement of individual GrzB-secreting cells by ELISpot also indicated that similar numbers of activated memory CD4 (~170/1x105) and memory CD8 (~200/1x105) T cells secreted GrzB. Expression of CD107a further indicated that Grzb is secreted similarly by activated CD4 and CD8 T cells, consistent with the ELISA and ELISpot results. However, memory CD8 T cells expressed and secreted more perforin compared to memory CD4 T cells, suggesting that perforin may be less associated with GrzB function for memory CD4 T cells.

Conclusions

Although measurement of intracellular GrzB by flow cytometry suggests that a larger proportion of CD8 T cells have higher capacity for GrzB production compared to CD4 T cells, ELISpot and ELISA show that similar numbers of activated CD4 and CD8 T cells secrete similar amounts of GrzB. Secretion of GrzB by activated CD8 T cells may be more tightly controlled compared to CD4 T cells.

【 授权许可】

   
2014 Lin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141114142620359.pdf 3100KB PDF download
Figure 5. 155KB Image download
Figure 4. 129KB Image download
Figure 3. 114KB Image download
Figure 2. 84KB Image download
Figure 1. 76KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Kim WJ, Kim H, Suk K, Lee WH: Macrophages express granzyme B in the lesion areas of atherosclerosis and rheumatoid arthritis. Immunol Lett 2007, 111(1):57-65.
  • [2]Strik MC, de Koning PJ, Kleijmeer MJ, Bladergroen BA, Wolbink AM, Griffith JM, Wouters D, Fukuoka Y, Schwartz LB, Hack CE, van Ham SM, Kummer JA: Human mast cells produce and release the cytotoxic lymphocyte associated protease granzyme B upon activation. Mol Immunol 2007, 44(14):3462-3472.
  • [3]Hagn M, Schwesinger E, Ebel V, Sontheimer K, Maier J, Beyer T, Syrovets T, Laumonnier Y, Fabricius D, Simmet T, Jahrsdörfer B: Human B cells secrete granzyme B when recognizing viral antigens in the context of the acute phase cytokine IL-21. J Immunol 2009, 183(3):1838-1845.
  • [4]Jahrsdörfer B, Vollmer A, Blackwell SE, Maier J, Sontheimer K, Beyer T, Mandel B, Lunov O, Tron K, Nienhaus GU, Simmet T, Debatin KM, Weiner GJ, Fabricius D: Granzyme B produced by human plasmacytoid dendritic cells suppresses T-cell expansion. Blood 2010, 115(6):1156-1165.
  • [5]Karrich JJ, Jachimowski LC, Nagasawa M, Kamp A, Balzarolo M, Wolkers MC, Uittenbogaart CH, Marieke van Ham S, Blom B: IL-21-stimulated human plasmacytoid dendritic cells secrete granzyme B, which impairs their capacity to induce T-cell proliferation. Blood 2013, 121(16):3103-3111.
  • [6]Tamang DL, Redelman D, Alves BN, Vollger L, Bethley C, Hudig D: Induction of granzyme B and T cell cytotoxic capacity by IL-2 or IL-15 without antigens: multiclonal responses that are extremely lytic if triggered and short-lived after cytokine withdrawal. Cytokine 2006, 36(3–4):148-159.
  • [7]Meyer T, Oberg HH, Peters C, Martens I, Adam-Klages S, Kabelitz D, Wesch D: poly(I:C) costimulation induces a stronger antiviral chemokine and granzyme B release in human CD4 T cells than CD28 costimulation. J Leukoc Biol 2012, 92(4):765-774.
  • [8]Appay V, Zaunders JJ, Papagno L, Sutton J, Jaramillo A, Waters A, Easterbrook P, Grey P, Smith D, McMichael AJ, Cooper DA, Rowland-Jones SL, Kelleher AD: Characterization of CD4(+) CTLs ex vivo. J Immunol 2002, 168(11):5954-5958.
  • [9]Brown DM: Cytolytic CD4 cells: Direct mediators in infectious disease and malignancy. Cell Immunol 2010, 262(2):89-95.
  • [10]Quezada SA, Simpson TR, Peggs KS, Merghoub T, Vider J, Fan X, Blasberg R, Yagita H, Muranski P, Antony PA, Restifo NP, Allison JP: Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med 2010, 207(3):637-650.
  • [11]Grossman WJ, Verbsky JW, Tollefsen BL, Kemper C, Atkinson JP, Ley TJ: Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 2004, 104(9):2840-2848.
  • [12]Medina MA, Couturier J, Feske ML, Mahne AE, Turner M, Yu X, Kozinetz CA, Orozco AF, Hutchison AT, Savidge TC, Rodgers JR, Lewis DE: Granzyme B- and Fas ligand-mediated cytotoxic function induced by mitogenic CD28 stimulation of human memory CD4+ T cells. J Leukoc Biol 2012, 91(5):759-771.
  • [13]Niiya H, Sakai I, Lei J, Azuma T, Uchida N, Yakushijin Y, Hato T, Fujita S, Yasukawa M: Differential regulation of perforin expression in human CD4+ and CD8+ cytotoxic T lymphocytes. Exp Hematol 2005, 33(7):811-818.
  • [14]Hildemann SK, Eberlein J, Davenport B, Nguyen TT, Victorino F, Homann D: High efficiency of antiviral CD4(+) killer T cells. PLoS One 2013, 8(4):e60420.
  • [15]Cai SF, Fehniger TA, Cao X, Mayer JC, Brune JD, French AR, Ley TJ: Differential expression of granzyme B and C in murine cytotoxic lymphocytes. J Immunol 2009, 182(10):6287-6297.
  • [16]Rininsland FH, Helms T, Asaad RJ, Boehm BO, Tary-Lehmann M: Granzyme B ELISPOT assay for ex vivo measurements of T cell immunity. J Immunol Methods 2000, 240(1–2):143-155.
  • [17]Shafer-Weaver K, Sayers T, Strobl S, Derby E, Ulderich T, Baseler M, Malyguine A: The Granzyme B ELISPOT assay: an alternative to the 51Cr-release assay for monitoring cell-mediated cytotoxicity. J Transl Med 2003, 1(1):14. BioMed Central Full Text
  • [18]Burkett MW, Shafer-Weaver KA, Strobl S, Baseler M, Malyguine A: A novel flow cytometric assay for evaluating cell-mediated cytotoxicity. J Immunother 2005, 28(4):396-402.
  • [19]Malyguine AM, Strobl S, Dunham K, Shurin MR, Sayers TJ: ELISPOT assay for monitoring Cytotoxic T Lymphocytes (CTL) activity in cancer vaccine clinical trials. Cells 2012, 1:111-126.
  • [20]Nowacki TM, Bettenworth D, Ross M, Heidemann J, Lehmann PV, Lügering A: Cytomegalovirus (CMV)-specific perforin and granzyme B ELISPOT assays detect reactivation of CMV infection in inflammatory bowel disease. Cells 2012, 1:35-50.
  • [21]Kabilan L, Andersson G, Lolli F, Ekre HP, Olsson T, Troye-Blomberg M: Detection of intracellular expression and secretion of interferon-gamma at the single-cell level after activation of human T cells with tetanus toxoid in vitro. Eur J Immunol 1990, 20(5):1085-1089.
  • [22]Asemissen AM, Nagorsen D, Keilholz U, Letsch A, Schmittel A, Thiel E, Scheibenbogen C: Flow cytometric determination of intracellular or secreted IFNgamma for the quantification of antigen reactive T cells. J Immunol Methods 2001, 251(1–2):101-108.
  • [23]Karlsson AC, Martin JN, Younger SR, Bredt BM, Epling L, Ronquillo R, Varma A, Deeks SG, McCune JM, Nixon DF, Sinclair E: Comparison of the ELISPOT and cytokine flow cytometry assays for the enumeration of antigen-specific T cells. J Immunol Methods 2003, 283(1–2):141-153.
  • [24]Schuerwegh AJ, De Clerck LS, Bridts CH, Stevens WJ: Comparison of intracellular cytokine production with extracellular cytokine levels using two flow cytometric techniques. Cytometry B Clin Cytom 2003, 55(1):52-58.
  • [25]Sun Y, Iglesias E, Samri A, Kamkamidze G, Decoville T, Carcelain G, Autran B: A systematic comparison of methods to measure HIV-1 specific CD8 T cells. J Immunol Methods 2003, 272(1–2):23-34.
  • [26]Won DI, Park JR: Flow cytometric measurements of TB-specific T cells comparing with QuantiFERON-TB gold. Cytometry B Clin Cytom 2010, 78(2):71-80.
  • [27]Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, Koup RA: Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 2003, 281(1–2):65-78.
  • [28]Rothstein TL, Mage M, Jones G, McHugh LL: Cytotoxic T lymphocyte sequential killing of immobilized allogeneic tumor target cells measured by time-lapse microcinematography. J Immunol 1978, 121(5):1652-1656.
  • [29]Isaaz S, Baetz K, Olsen K, Podack E, Griffiths GM: Serial killing by cytotoxic T lymphocytes: T cell receptor triggers degranulation, re-filling of the lytic granules and secretion of lytic proteins via a non-granule pathway. Eur J Immunol 1995, 25(4):1071-1079.
  • [30]Stinchcombe JC, Bossi G, Booth S, Griffiths GM: The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 2001, 15(5):751-761.
  • [31]Brown DM, Lee S, Garcia-Hernandez Mde L, Swain SL: Multifunctional CD4 cells expressing gamma interferon and perforin mediate protection against lethal influenza virus infection. J Virol 2012, 86(12):6792-6803.
  • [32]Fang M, Siciliano NA, Hersperger AR, Roscoe F, Hu A, Ma X, Shamsedeen AR, Eisenlohr LC, Sigal LJ: Perforin-dependent CD4+ T-cell cytotoxicity contributes to control a murine poxvirus infection. Proc Natl Acad Sci U S A 2012, 109(25):9983-9988.
  • [33]Griffiths GM, Isaaz S: Granzymes A and B are targeted to the lytic granules of lymphocytes by the mannose-6-phosphate receptor. J Cell Biol 1993, 120(4):885-896.
  • [34]Brennan AJ, Chia J, Browne KA, Ciccone A, Ellis S, Lopez JA, Susanto O, Verschoor S, Yagita H, Whisstock JC, Trapani JA, Voskoboinik I: Protection from endogenous perforin: glycans and the C terminus regulate exocytic trafficking in cytotoxic lymphocytes. Immunity 2011, 34(6):879-892.
  • [35]Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR, Ley TJ: Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 2007, 27(4):635-646.
  • [36]Efimova OV, Kelley TW: Induction of granzyme B expression in T-cell receptor/CD28-stimulated human regulatory T cells is suppressed by inhibitors of the PI3K-mTOR pathway. BMC Immunol 2009, 10:59. BioMed Central Full Text
  • [37]Loebbermann J, Thornton H, Durant L, Sparwasser T, Webster KE, Sprent J, Culley FJ, Johansson C, Openshaw PJ: Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection. Mucosal Immunol 2012, 5(2):161-172.
  • [38]Sharma V, Delgado M, Ganea D: Granzyme B, a new player in activation-induced cell death, is down-regulated by vasoactive intestinal peptide in Th2 but not Th1 effectors. J Immunol 2006, 176(1):97-110.
  • [39]Kreutzman A, Ilander M, Porkka K, Vakkila J, Mustjoki S: Dasatinib promotes Th1-type responses in granzyme B expressing T-cells. Oncoimmunology 2014, 3:e28925.
  • [40]Naouar I, Boussoffara T, Ben Ahmed M, Belhaj Hmida N, Gharbi A, Gritli S, Ben Salah A, Louzir H: Involvement of Different CD4(+) T Cell Subsets Producing Granzyme B in the Immune Response to Leishmania major Antigens.Mediators Inflamm in press.
  • [41]Couturier J, Hutchison AT, Medina MA, Gingaras C, Urvil P, Yu X, Nguyen C, Mahale P, Lin L, Kozinetz CA, Schmitz JE, Kimata JT, Savidge TC, Lewis DE: HIV replication in conjunction with granzyme B production by CCR5+ memory CD4 T cells: Implications for bystander cell and tissue pathologies. Virology 2014, 462–463:175-188.
  • [42]Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A: Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 2007, 13(10):1173-1175.
  • [43]Domingues HS, Mues M, Lassmann H, Wekerle H, Krishnamoorthy G: Functional and pathogenic differences of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. PLoS One 2010, 5(11):e15531.
  • [44]Huse M, Lillemeier BF, Kuhns MS, Chen DS, Davis MM: T cells use two directionally distinct pathways for cytokine secretion. Nat Immunol 2006, 7(3):247-255.
  • [45]Stanley AC, Lacy P: Pathways for cytokine secretion. Physiology (Bethesda) 2010, 25(4):218-229.
  • [46]Reefman E, Kay JG, Wood SM, Offenhäuser C, Brown DL, Roy S, Stanley AC, Low PC, Manderson AP, Stow JL: Cytokine secretion is distinct from secretion of cytotoxic granules in NK cells. J Immunol 2010, 184(9):4852-4862.
  文献评价指标  
  下载次数:15次 浏览次数:3次