期刊论文详细信息
BMC Evolutionary Biology
Regionalization of the axial skeleton in the ‘ambush predator’ guild – are there developmental rules underlying body shape evolution in ray-finned fishes?
Laura AB Wilson2  Erin E Maxwell1 
[1] Paläontologisches Institut und Museum, Universität Zürich, Zürich, Switzerland;School of Biological, Earth, and Environmental Sciences, University of New South Wales, Kensington, NSW 2052, Australia
关键词: Sphyraenidae;    Beloniformes;    Esocidae;    Lepisosteidae;    Aulostomidae;    Saurichthyidae;    Axial elongation;    Modularity;    Axial skeleton;    Actinopterygii;   
Others  :  1084903
DOI  :  10.1186/1471-2148-13-265
 received in 2013-09-27, accepted in 2013-11-29,  发布年份 2013
PDF
【 摘 要 】

Background

A long, slender body plan characterized by an elongate antorbital region and posterior displacement of the unpaired fins has evolved multiple times within ray-finned fishes, and is associated with ambush predation. The axial skeleton of ray-finned fishes is divided into abdominal and caudal regions, considered to be evolutionary modules. In this study, we test whether the convergent evolution of the ambush predator body plan is associated with predictable, regional changes in the axial skeleton, specifically whether the abdominal region is preferentially lengthened relative to the caudal region through the addition of vertebrae. We test this hypothesis in seven clades showing convergent evolution of this body plan, examining abdominal and caudal vertebral counts in over 300 living and fossil species. In four of these clades, we also examined the relationship between the fineness ratio and vertebral regionalization using phylogenetic independent contrasts.

Results

We report that in five of the clades surveyed, Lepisosteidae, Esocidae, Belonidae, Sphyraenidae and Fistulariidae, vertebrae are added preferentially to the abdominal region. In Lepisosteidae, Esocidae, and Belonidae, increasing abdominal vertebral count was also significantly related to increasing fineness ratio, a measure of elongation. Two clades did not preferentially add abdominal vertebrae: Saurichthyidae and Aulostomidae. Both of these groups show the development of a novel caudal region anterior to the insertion of the anal fin, morphologically differentiated from more posterior caudal vertebrae.

Conclusions

The preferential addition of abdominal vertebrae in fishes with an elongate body shape is consistent with the existence of a conservative positioning module formed by the boundary between the abdominal and caudal vertebral regions and the anterior insertion of the anal fin. Dissociation of this module is possible, although less probable than changes in the independently evolving abdominal region. Dissociation of the axial skeleton-median fin module leads to increased regionalization within the caudal vertebral column, something that has evolved several times in bony fishes, and may be homologous with the sacral region of tetrapods. These results suggest that modularity of the axial skeleton may result in somewhat predictable evolutionary outcomes in bony fishes.

【 授权许可】

   
2013 Maxwell and Wilson; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113165243316.pdf 3530KB PDF download
Figure 8. 79KB Image download
Figure 7. 139KB Image download
Figure 6. 55KB Image download
Figure 5. 58KB Image download
Figure 4. 106KB Image download
Figure 3. 130KB Image download
Figure 2. 34KB Image download
20140722033805610.pdf 1513KB PDF download
【 图 表 】

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Pough FH, Janis CM, Heiser JB: Vertebrate life. 9th edition. Boston: Pearson; 2013.
  • [2]Moyle PB, Cech JJ: Fishes: an introduction to ichthyology. 5th edition. London: Pearson Prentice Hall; 2003.
  • [3]Ward AB, Brainerd EL: Evolution of axial patterning in elongate fishes. Biol J Linn Soc Lond 2007, 90:97-116.
  • [4]Mehta RS, Ward AB, Alfaro ME, Wainwright PC: Elongation of the body in eels. Integr Comp Biol 2010, 50(6):1091-1105.
  • [5]Caldwell MW: “Without a leg to stand on”: on the evolution and development of axial elongation and limblessness in tetrapods. Can J Earth Sci 2003, 40:573-588.
  • [6]Buchholtz EA: Modular evolution of the cetacean vertebral column. Evol Dev 2007, 9(3):278-289.
  • [7]Ward AB, Mehta RS: Axial elongation in fishes: using morphological approaches to elucidate developmental mechanisms in studying body shape. Integr Comp Biol 2010, 50(6):1106-1119.
  • [8]Maxwell EE, Furrer H, Sánchez-Villagra M: Exceptional fossil preservation demonstrates a new mode of axial skeleton elongation in early ray-finned fishes. Nat Commun 2013, 4:2570.
  • [9]Klingenberg CP: Cranial integration and modularity: insights into evolution and development from morphometric data. Hystrix 2013, 24(1):43-58.
  • [10]Raff RA: The shape of life. Chicago, IL: University of Chicago Press; 1996.
  • [11]Wagner GP, Altenburg L: Perspective: complex adaptations and the evolution of evolvability. Evolution 1996, 50(3):967-976.
  • [12]Kirschner M, Gerhart J: Evolvability. Proc Natl Acad Sci U S A 1998, 95(15):8420-8427.
  • [13]Klingenberg CP: Integration, modules, and development: molecules to morphology to evolution. In Phenotypic integration: studying the ecology and evolution of complex phenotypes. Edited by Pigliucci M, Preston K. New York: Oxford University Press; 2004:213-230.
  • [14]Reece JS, Mehta RS: Evolutionary history of elongation and maximum body length in moray eels (Anguilliformes, Muraenidae). Biol J Linn Soc Lond 2013, 109(4):861-875.
  • [15]Goatley CHR, Bellwood DR, Bellwood O: Fishes on coral reefs: changing roles over the past 240 million years. Paleobiology 2010, 36(3):415-427.
  • [16]Friedman M: Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proc R Soc Lond B Biol Sci 2010, 277:1675-1683.
  • [17]Porter HT, Motta PJ: A comparison of strike and prey capture kinematics of three species of piscivorous fishes: Florida gar (Lepisosteus platyrhincus), redfin needlefish (Strongylura notata), and great barracuda (Sphyraena barracuda). Mar Biol 2004, 145:989-1000.
  • [18]Webb PW, Skadsen JM: Strike tactics of Esox. Can J Zool 1980, 58:1462-1469.
  • [19]Webb PW: Fast-start performance and body form in seven species of teleost fish. J Exp Biol 1978, 74:211-226.
  • [20]Webb PW: Avoidance responses of fathead minnow to strikes by four teleost predators. J Comp Physiol 1982, 147:371-378.
  • [21]Dill LM: The escape response of the zebra danio (Brachydanio rerio) I. the stimulus for escape. Anim Behav 1974, 22:711-722.
  • [22]Oulion S, Borday-Birraux V, Debiais-Thibaud M, Mazan S, Laurenti P, Casane D: Evolution of repeated structures along the body axis of jawed vertebrates, insights from Scyliorhinus canicula Hox code. Evol Dev 2011, 13(3):247-259.
  • [23]Morin-Kensicki EM, Melancon E, Eisen JS: Segmental relationship between somites and vertebral column in zebrafish. Development 2002, 129:3851-3860.
  • [24]Burke AC, Nelson CE, Morgan BA, Tabin C: Hox genes and the evolution of vertebrate axial morphology. Development 1995, 121:333-346.
  • [25]Freitas R, Zhang G, Cohn MJ: Evidence that mechanisms of fin development evolved in the midline of early vertebrates. Nature 2006, 442:1033-1037.
  • [26]Mabee PM, Crotwell PL, Bird NC, Burke AC: Evolution of median fin modules in the axial skeleton of fishes. J Exp Zool B Mol Dev Evol 2002, 294:77-90.
  • [27]Leis JM, Carson-Ewart BM: Larvae of Indo-Pacific coastal fishes: an identification guide to marine fish larvae. Leiden: Brill; 2000.
  • [28]Grande L: An empirical synthetic pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy: the resurrection of Holostei. American Society of Ichthyologists and Herpetologists Special Publication 6 Copeia Suppl 2010, 10(2A):871.
  • [29]Kammerer CF, Grande L, Westneat MW: Comparative and developmental functional morphology of the jaws of living and fossil gars (Actinopterygii: Lepisosteidae). J Morphol 2006, 267:1017-1031.
  • [30]Lovejoy NR: Reinterpreting recapitulation: systematics of needlefishes and their allies (Teleostei: Beloniformes). Evolution 2000, 54(4):1349-1362.
  • [31]Lovejoy NR, Iranpour M, Collette BB: Phylogeny and jaw ontogeny of beloniform fishes. Integr Comp Biol 2004, 44:366-377.
  • [32]Sallan LC, Friedman M: Heads or tails: staged diversification in vertebrate evolutionary radiations. Proc R Soc Lond B Biol Sci 2012, 279:2025-2032.
  • [33]Grande L: The first Esox (Esocidae: Teleostei) from the Eocene Green River Formation, and a brief review of esocid fishes. J Vertebr Paleontol 1999, 19(2):271-292.
  • [34]Collette BB: South American freshwater needlefishes of the genus Potamorrhaphis (Beloniformes: Belonidae). Proc Biol Soc Wash 1982, 95(4):714-747.
  • [35]Wheeler AC: A preliminary revision of the genus Aulostomus. Annals and Magazine of Natural History, Zoology, Botany and Geology 1955, 12(8):613-623.
  • [36]Rieppel O: Die Triasfauna der Tessiner Kalkalpen XXV: die Gattung Saurichthys (Pisces, Actinopterygii) aus der mittleren Trias des Monte San Giorgio, Kanton Tessin. Schweiz Palaeontol Abh 1985, 108:1-103.
  • [37]Sallan LC: Tetrapod-like axial regionalization in an early ray-finned fish. Proc R Soc Lond B Biol Sci 2012, 279:3264-3271.
  • [38]Wu F, Sun Y, Xu G, Hao W, Jiang D: New saurichthyid actinopterygian fishes from the Anisian (Middle Triassic) of southwestern China. Acta Palaeontol Pol 2011, 56(3):581-614.
  • [39]Blot J: La faune ichthyologique des gisements du Monte Bolca (Province de Vérone, Italie). Catalogue systématique présentant l’état actuel des recherches concernant cette faune. Bulletin du Muséum National d’Histoire Naturelle 4e Série Section C: Sciences de la Terre, Paléontologie, Géologie, Minéralogie 1980, 2(4):339-396.
  • [40]Parin NN, Micklich N: Two aulostomoid fishes (Aulostomidae, Syngnathiformes) from the lower Oligocene of Germany [in Russian, English abstract]. Paleontol J 1996, 1996(1):61-67.
  • [41]Urlichs M, Wild R, Ziegler B: Der Posidonien-Schiefer und seine Fossilien. Stuttg Beitr Naturkd, C 1994, 36:1-95.
  • [42]Agassiz L: Recherches sur les poissons fossiles IV: contenant l’histoire de l’ordre des cténoides. Neuchatel: Petitpierre; 1833-1845:1833-1845.
  • [43]McDowall RM: Jordan’s and other ecogeographical rules, and the vertebral number in fishes. J Biogeog 2008, 35:501-508.
  • [44]Newbrey MG, Wilson MVH, Ashworth AC: Climate change and evolution of growth in Late Cretaceous to Recent North American Esociformes. In Mesozoic fishes 4 – homology and phylogeny. Edited by Arratia G, Schultze H-P, Wilson MVH. Munich: Verlag Dr. Friedrich Pfeil; 2008:311-350.
  • [45]Lindsey CC: Pleomerism, the widespread tendency among related fish species for vertebral number to be correlated with maximum body length. J Fish Res Board Can 1975, 32:2453-2469.
  • [46]Webb PW: Body form, locomotion and foraging in aquatic vertebrates. Am Zool 1984, 24:107-120.
  • [47]Yamahira K, Nishida T: Latitudinal variation in axial patterning of the medaka (Actinopterygii: Adrianichthyidae): Jordan’s rule is substantiated by genetic variation in abdominal vertebral number. Biol J Linn Soc Lond 2009, 96:856-866.
  • [48]Yamahira K, Nishida T, Arakawa A, Iwaisaki H: Heritability and genetic correlation of abdominal versus caudal vertebral number in the medaka (Actinopterygii: Adrianichthyidae): genetic constraints on evolution of axial patterning? Biol J Linn Soc Lond 2009, 96:867-874.
  • [49]Kiso S, Miyake T, Yamahira K: Heritability and genetic correlation of abdominal and caudal vertebral numbers in latitudinal populations of the medaka (Oryzias latipes). Environ Biol Fishes 2012, 93:185-192.
  • [50]Kimura T, Shinya M, Naruse K: Genetic analysis of vertebral regionalization and number in medaka (Oryzias latipes) inbred lines. G3 (Bethesda) 2012, 2:1317-1323.
  • [51]Chalifa Y: Two new species of longirostrine fishes from the early Cenomanian (Late Cretaceous) of Ein-Yabrud, Israel, with comments on the phylogeny of the Dercetidae. J Vertebr Paleontol 1989, 9(3):314-328.
  • [52]Carroll RL: Vertebrate paleontology and evolution. New York: W.H. Freeman and Company; 1988.
  • [53]Maddison WP, Maddison DR: Mesquite: a modular system for evolutionary analysis. 2011. 2.75 edn: http://mesquiteproject.org webcite
  • [54]Wilson LAB, Furrer H, Stockar R, Sánchez-Villagra MR: A quantitative evaluation of evolutionary patterns in opercle bone shape in Saurichthys (Actinopterygii: Saurichthyidae). Palaeontology 2013, 56(4):901-915.
  • [55]Rieppel O: A new species of the genus Saurichthys (Pisces: Actinopterygii) from the Middle Triassic of Monte San Giorgio (Switzerland), with comments on the phylogenetic interrelationships of the genus. Palaeontographica Abt A 1992, 221(1–3):63-94.
  • [56]Losos JB: Uncertainty in the reconstruction of ancestral character states and limitations on the use of phylogenetic comparative methods. Anim Behav 1999, 58:1319-1324.
  • [57]Paradis E, Claude J, Strimmer K: APE: analyses of phylogenetics and evolution in R language. Bioinformatics 2004, 20:289-290.
  • [58]R Development Core Team: R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2011.
  • [59]Collar DC, Reynaga CM, Ward AB, Mehta RS: A revised metric for quantifying body shape in vertebrates. Zoology 2013, 116:246-257.
  • [60]Webb PW: Hydrodynamics and energetics of fish propulsion. Bull Fish Res Board Can 1975, 190:1-158.
  • [61]Felsenstein J: Phylogenies and the comparative method. Am Nat 1985, 125:1-15.
  • [62]Midford PE, Garland T Jr, Maddison W: PDAP-PDTREE package for mesquite. 2009. 1.15 edn: http://mesquiteproject.org/pdap_mesquite/ webcite
  • [63]Garland TJ, Huey RB, Bennett AF: Phylogeny and thermal physiology in lizards: a reanalysis. Evolution 1991, 45:1969-1975.
  • [64]Garland TJ, Harvey PH, Ives AR: Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 1992, 41:18-32.
  • [65]Diaz-Uriarte R, Garland T: Testing hypotheses of correlated evolution using phylogenetically independent contrasts: sensitivity to deviations from Brownian motion. Syst Biol 1996, 65(1):27-47.
  • [66]Harmon LJ, Weir JT, Brock CD, Glor RE: GEIGER: investigating evolutionary radiations. Bioinformatics 2008, 24:129-131.
  • [67]Diaz-Uriarte R, Garland T: Effects of branch length errors on the performance of phylogenetically independent contrasts. Syst Biol 1998, 47:654-672.
  • [68]Quinn GP, Keough MJ: Experimental design and data analysis for biologists. Cambridge: Cambridge University Press; 2002.
  • [69]Gardiner BG, Schaeffer B, Masserie JA: A review of the lower actinopterygian phylogeny. Zool J Linn Soc 2005, 144:511-525.
  • [70]Grande L, Bemis WE: Osteology and phylogenetic relationships of fossil and recent paddlefishes (Polyodontidae) with comments on the interrelationships of Acipenseriformes. Soc Vertebr Paleontol Mem 1991, 11(S1):1-121.
  • [71]Hilton EJ, Grande L, Bemis WE: Skeletal anatomy of the shortnose sturgeon Acipenser brevirostrum Lesueur, 1818, and the systematics of sturgeons (Acipenseriformes, Acipenseridae). Fieldiana: Life and Earth Sciences 2011, 3:1-168.
  • [72]Nielsen E: Studies on Triassic fishes II. Palaeozoologica Groenlandica 1949, 3:1-309.
  • [73]Bath DW, O’Connor JM, Alber JB, Arvidson LG: Development and identification of larval Atlantic sturgeon (Acipenser oxyrhynchus) and short-nose sturgeon (A. brevirostrum) from the Hudson River estuary, New York. Copeia 1981, 1981(3):711-717.
  • [74]López-Arbarello A: Phylogenetic interrelationships of ginglymodian fishes (Actinopterygii: Neopterygii). PLoS ONE 2012, 7(7):e39370.
  • [75]López-Arbarello A, Sferco E: New semionotiform (Actinopterygii: Neopterygii) from the Late Jurassic of southern Germany. J Syst Palaeontol 2011, 9(2):197-215.
  • [76]McCune AR: A revision of Semionotus (Pisces: Semionotidae) from the Triassic and Jurassic of Europe. Palaeontology 1986, 29(2):213-233.
  • [77]Cavin L, Deesri U, Suteethorn V: Osteology and relationships of Thaiichthys nov. gen.: a Ginglymodi from the Late Jurassic–Early Cretaceous of Thailand. Palaeontology 2013, 56(1):183-208.
  • [78]Wenz S: Pliodetes nigeriensis gen. nov. et. sp. nov., a new semionotid fish from the Lower Cretaceous of Gadoufaoua (Niger Republic): phylogenetic comments. In Mesozoic fishes 2 – systematics and fossil record. Edited by Arratia G, Schultze H-P. Munich: Verlag Dr. Friedrich Pfeil; 1999:107-120.
  • [79]Tintori A, Lombardo C: A new early Semionotidae (Semionotiformes, Actinopterygii) from the upper Ladinian of Monte San Giorgio area (southern Switzerland and Northern Italy). Riv Ital Paleontol Stratigr 2007, 113(3):369-381.
  • [80]Gemballa S, Röder K: From head to tail: the myoseptal system in basal actinopterygians. J Morphol 2004, 259:155-171.
  • [81]Gaudant J: An attempt at the palaeontological history of the European mudminnows (Pisces, Teleostei, Umbridae). Neues Jahrb Geol Palaontol Abh 2012, 263(2):93-109.
  • [82]Andrés López J, Chen W-J, Ortí G: Esociform phylogeny. Copeia 2004, 2004(3):449-464.
  • [83]Taverne L, Filleul A: Osteology and relationships of the genus Spaniodon (Teleostei, Salmoniformes) from the Santonian (Upper Cretaceous) of Lebanon. Palaeontology 2003, 46(5):927-944.
  • [84]Delling B: Morphological distinction of the marble trout, Salmo marmoratus, in comparison to marbled Salmo trutta from River Otra, Norway. Cybium 2002, 26(4):283-300.
  • [85]Chapman WM: The osteology of the haplimous fish Novumbra hubbsi Schultz with comparative notes on related species. J Morphol 1934, 56(2):371-405.
  • [86]Cavender T: An Oligocene mudminnow (Family Umbridae) from Oregon with remarks on relationships within the Esocoidei. Occas Pap Mus Zool Univ Mich 1969, 660:1-33.
  • [87]Grafen A: The phylogenetic regression. Philos Trans R Soc Lond B Biol Sci 1989, 326:119-157.
  • [88]Purvis A: A composite estimate of primate phylogeny. Philos Trans R Soc Lond B Biol Sci 1995, 348:405-421.
  • [89]Kawahara R, Miya M, Mabuchi K, Lavoué S, Inoue JG, Satoh TP, Kawaguchi A, Nishida M: Interrelationships of the 11 gasterosteiform families (sticklebacks, pipefishes, and their relatives): a new perspective based on whole mitogenome sequences from 75 higher teleosts. Mol Phylogenet Evol 2008, 46:224-236.
  • [90]Wilson AB, Orr JW: The evolutionary origins of Syngnathidae: pipefishes and seahorses. J Fish Biol 2011, 78:1603-1623.
  • [91]Teske PR, Cherry MI, Matthee CA: The evolutionary history of seahorses (Syngnathidae: Hippocampus): molecular data suggest a West Pacific origin and two invasions of the Atlantic Ocean. Mol Phylogenet Evol 2004, 30:273-286.
  • [92]Wilson AB, Ahnesjö I, Vincent ACJ, Meyer A: The dynamics of male brooding, mating patterns, and sex roles in pipefishes and seahorses (Family Syngnathidae). Evolution 2003, 57(6):1374-1386.
  • [93]Pietsch TW: Evolutionary relationships of the sea moths (Teleostei: Pegasidae) with a classification of gasterosteiform families. Copeia 1978, 1978(3):517-529.
  • [94]Fritzsche RA: A review of the cornetfishes, genus Fistularia (Fistulariidae), with a discussion of intrageneric relationships and zoogeography. Bull Mar Sci 1976, 26(2):196-204.
  • [95]Fahay MP: Early stages of fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras): volume I: Acipenseriformes through Syngnathiformes, vol. 1. Northwest Atlantic Fisheries Organization: Nova Scotia, Canada; 2007.
  • [96]Winkler JD, Stölting KN, Wilson AB: Sex-specific responses to fecundity selection in the broad-nosed pipefish. Evol Ecol 2012, 26:701-714.
  • [97]Porter MM, Novitskaya E, Castro-Ceseña AB, Meyers MA, McKittrick J: Highly deformable bones: unusual deformation mechanisms of seahorse armor. Acta Biomater 2013, 9(6):6763-6770.
  • [98]Kuranaga I, Sasaki K: Larval development in a snipefish (Macroramphosus scolopax) from Japan with notes on eastern Pacific and Mediterranean Macroramphosus larvae (Gasterosteiformes, Macroramphosidae). Ichthyol Res 2000, 47(1):101-106.
  • [99]Žalohar J, Tomaž H: The first known fossil record of pygmy pipehorses (Teleostei: Syngnathidae: Hippocampinae) from the Miocene coprolitic horizon, Tunjice Hills, Slovenia. Annales de Paléontologie 2012, 98:131-151.
  • [100]Orr JW, Fritzsche RA: Revision of the ghost pipefishes, family Solenostomidae (Teleostei: Syngnathoidei). Copeia 1993, 1993(1):168-182.
  • [101]Kuiter RH: Revision of the Australian seahorses of the genus Hippocampus (Syngnathiformes: Syngnathidae) with descriptions of nine new species. Rec Aust Mus 2001, 53(3):293-340.
  • [102]Bannikov AF, Carnevale G: A long-bodied centriscoid fish from the basal Eocene of Kabardino-Balkaria, northern Caucasus, Russia. Naturwissenschaften 2012, 99:379-389.
  • [103]Hablützel P: Hybridization in European Syngnathus. Zurich: University of Zurich; 2009.
  • [104]Mwale M: The biology and systematics of South African pipefishes of the genus Syngnathus. Grahamstown, South Africa: Rhodes University; 2005.
  • [105]Dawson CE: Revision of the genus Microphis Kaup (Pisces: Syngnathidae). Bull Mar Sci 1984, 35(2):117-181.
  • [106]Fritzsche RA: Development of Fishes of the Mid-Atlantic Bight. Volume V. Chaetodontidae through Ophidiidae. In Biological Services Program. vol. 5. Fish and Wildlife Service, U.S. Department of the Interior; 1978:348.
  • [107]Nielsen E: A new Eocene teleost from Denmark. Meddelelser fra Dansk Geologisk Forening 1960, 14:247-252.
  • [108]Parin NN, Micklich N: Fossil Gasterosteiformes from the lower Oligocene of Frauenweiler (Baden-Württemberg, Germany) I. New information on the morphology and systematics of the genus Aeoliscus Jordan and Starks 1902. Paläontol Z 1996, 70(3/4):521-545.
  • [109]Parenti LR: A phylogenetic analysis and taxonomic revision of ricefishes, Oryzias and relatives (Beloniformes, Adrianichthyidae). Zool J Linn Soc 2008, 154:494-610.
  • [110]Magtoon W: Oryzias songkhramensis, a new species of ricefish (Beloniformes; Adrianichthyidae) from Northeast Thailand and Central Laos. Tropical Natural History 2010, 10(1):107-129.
  • [111]Asai T, Senou H, Hosoya K: Oryzias sakaizumii, a new ricefish from northern Japan (Teleostei: Adrianichthyidae). Ichthyol Explor Freshw 2011, 22(4):289-299.
  • [112]Dettai A, Lecointre G: Further support for the clades obtained by multiple molecular phylogenies in the acanthomorph bush. C R Biol 2005, 328:674-689.
  • [113]Otero O: Anatomy, systematics and phylogeny of both recent and fossil latid fishes (Teleostei, Perciformes, Latidae). Zool J Linn Soc 2004, 141:81-133.
  • [114]Fukui A: Early ontogeny and systematics of Bothidae, Pleuronectoidei. Bull Mar Sci 1997, 60(1):192-212.
  • [115]Azevedo MFC, Oliveira C, Pardo BG, Martínez P, Foresti F: Phylogenetic analysis of Pleuronectiformes (Teleostei) based on sequences of 12S and 16S mitochondrial genes. Genet Mol Biol 2008, 31(1):284-292.
  • [116]Friedman M: Osteology of Heteronectes chaneti (Acanthomorpha, Pleuronectiformes), an Eocene stem flatfish, with a discussion of flatfish sister-group relationships. J Vertebr Paleontol 2012, 32(4):735-756.
  • [117]Matsuura Y, Suzuky K: Larval development of two species of barracuda, Sphyraena guachancho and S. tome (Teleostei: Sphyraenidae), from southeastern Brazil. Ichthyol Res 1997, 44(4):369-378.
  • [118]Orton GL: Early developmental stages of the California barracuda, Sphyraena argentea Girard. Calif Fish Game 1955, 41(2):167-176.
  文献评价指标  
  下载次数:62次 浏览次数:18次