BMC Genomics | |
Quantitative phosphoproteomic profiling of fiber differentiation and initiation in a fiberless mutant of cotton | |
Shuxun Yu1  Jiwen Yu1  Jinfa Zhang2  Xingli Li1  Haijing Li1  Wenfeng Pei1  Man Wu1  Qifeng Ma3  | |
[1] State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China;Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces NM 88003, USA;College of Agronomy, Northwest A&F University, Yangling 712100, China | |
关键词: Phosphoproteomics; Fiber initiation; Fuzzless-lintless mutant; Gossypium hirsutum; | |
Others : 1216595 DOI : 10.1186/1471-2164-15-466 |
|
received in 2014-01-25, accepted in 2014-06-06, 发布年份 2014 | |
【 摘 要 】
Background
The cotton (Gossypium spp.) fiber cell is an important unicellular model for studying cell differentiation. There is evidence suggesting that phosphorylation is a critical post-translational modification involved in regulation of a wide range of cell activities. Nevertheless, the sites of phosphorylation in G. hirsutum and their regulatory roles in fiber cell initiation are largely unknown. In this study, we employed a mass spectrometry-based phosphoproteomics to conduct a global and site-specific phosphoproteome profiling between ovules of a fuzzless-lintless (fl) Upland cotton (G. hirsutum) mutant and its isogenic parental wild type (WT) at -3 and 0 days post-anthesis (DPA).
Results
A total of 830 phosphopeptides and 1,592 phosphorylation sites from 619 phosphoproteins were identified by iTRAQ (isobaric tags for relative and absolute quantitation). Of these, 76 phosphoproteins and 1,100 phosphorylation sites were identified for the first time after searching the P3DB public database using the BLAST program. Among the detected phosphopeptides, 69 were differentially expressed between the fl mutant and its WT in ovules at -3 and 0 DPA. An analysis using the Motif-X program uncovered 19 phosphorylation motifs, 8 of which were unique to cotton. A further metabolic pathway analysis revealed that the differentially phosphorylated proteins were involved in signal transduction, protein modification, carbohydrate metabolic processes, and cell cycle and cell proliferation.
Conclusions
Our phosphoproteomics-based research provides the first global overview of phosphorylation during cotton fiber initiation, and also offers a helpful dataset for elucidation of signaling networks in fiber development of G. hirsutum.
【 授权许可】
2014 Ma et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150701130224510.pdf | 2101KB | download | |
Figure 4. | 65KB | Image | download |
Figure 3. | 99KB | Image | download |
Figure 2. | 113KB | Image | download |
Figure 1. | 136KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Lee JJ, Woodward AW, Chen ZJ: Gene expression changes and early events in cotton fibre development. Ann Bot-London 2007, 100(7):1391-1401.
- [2]BAsRA AS, Malik C: Development of the cotton fiber. Int Rev Cytol 1984, 89(1):65-113.
- [3]Kim HJ, Triplett BA: Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 2001, 127(4):1361-1366.
- [4]Tiwari SC, Wilkins TA: Cotton (Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism. Can J Bot 1995, 73(5):746-757.
- [5]Qin YM, Zhu YX: How cotton fibers elongate: a tale of linear cell-growth mode. Curr Opin Plant Biol 2011, 14(1):106-111.
- [6]Samuel Yang S, Cheung F, Lee JJ, Ha M, Wei NE, Sze SH, Stelly DM, Thaxton P, Triplett B, Town CD: Accumulation of genome‒specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 2006, 47(5):761-775.
- [7]Wang ZM, Xue W, Dong CJ, Jin LG, Bian SM, Wang C, Wu XY, Liu JY: A comparative miRNAome analysis reveals seven fiber initiation-related and 36 novel miRNAs in developing cotton ovules. Mol Plant 2012, 5(4):889-900.
- [8]Li YJ, Zhang XY, Wang FX, Yang CL, Liu F, Xia GX, Sun J: A comparative proteomic analysis provides insights into pigment biosynthesis in brown colored fiber. J Proteomics 2012, 78(1):374-388.
- [9]Wu Y, Machado AC, White RG, Llewellyn DJ, Dennis ES: Expression profiling identifies genes expressed early during lint fibre initiation in cotton. Plant Cell Physiol 2006, 47(1):107-127.
- [10]Zhang TZ, Pan JJ: Genetic analysis of a fuzzless-lintless mutant in Gossypium hirsutum L. Jiangsu J Agr Sci 1991, 7:13-16.
- [11]Wang QQ, Liu F, Chen XS, Ma XJ, Zeng HQ, Yang ZM: Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics 2010, 96(6):369-376.
- [12]Liu K, Han M, Zhang C, Yao L, Sun J, Zhang T: Comparative proteomic analysis reveals the mechanisms governing cotton fiber differentiation and initiation. J Proteomics 2012, 75(3):845-856.
- [13]Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villén J, Haas W, Sowa ME, Gygi SP: A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 2010, 143(7):1174-1189.
- [14]Liu H, Sadygov RG, Yates JR: A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 2004, 76(14):4193-4201.
- [15]Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S: The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 2012, 44(10):1098-1103.
- [16]Salih E: Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. Mass Spectrom Rev 2005, 24(6):828-846.
- [17]Wicks SJ, Lui S, Abdel-Wahab N, Mason RM, Chantry A: Inactivation of smad-transforming growth factor β signaling by Ca2+-calmodulin-dependent protein kinase II. Mol Cell Biol 2000, 20(21):8103-8111.
- [18]Cieśla J, Frączyk T, Rode W: Phosphorylation of basic amino acid residues in proteins: important but easily missed. Acta Biochim Pol 2011, 58:137-148.
- [19]Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM: Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 2002, 20(3):301-305.
- [20]Villén J, Gygi SP: The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 2008, 3(10):1630-1638.
- [21]Zheng J, Liu L, Wang J, Jin Q: Urinary proteomic and non-prefractionation quantitative phosphoproteomic analysis during pregnancy and non-pregnancy. BMC Genomics 2013, 14(1):777. BioMed Central Full Text
- [22]Sugiyama N, Nakagami H, Mochida K, Daudi A, Tomita M, Shirasu K, Ishihama Y: Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol 2008, 4(1):1-7.
- [23]Whiteman SA, Nühse TS, Ashford DA, Sanders D, Maathuis FJ: A proteomic and phosphoproteomic analysis of Oryza sativa plasma membrane and vacuolar membrane. Plant J 2008, 56(1):146-156.
- [24]Fu Q, Liu PC, Wang JX, Song QS, Zhao XF: Proteomic identification of differentially expressed and phosphorylated proteins in epidermis involved in larval-pupal metamorphosis of Helicoverpa armigera. BMC Genomics 2009, 10(1):600. BioMed Central Full Text
- [25]Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, Schulze WX: PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 2008, 36(Suppl 1):1015-1021.
- [26]Gao J, Agrawal GK, Thelen JJ, Xu D: P3DB: a plant protein phosphorylation database. Nucleic Acids Res 2009, 37(Suppl 1):960-962.
- [27]Yao Q, Bollinger C, Gao J, Xu D, Thelen JJ: P3DB: an integrated database for plant protein phosphorylation. Front Plant Sci 2012, 3:1-8.
- [28]Rose CM, Venkateshwaran M, Grimsrud PA, Westphall MS, Sussman MR, Coon JJ, Ané J-M: Medicago PhosphoProtein Database: a repository for Medicago truncatula phosphoprotein data. Front Plant Sci 2012, 3:1-6.
- [29]Takahashi T, Serada S, Ako M, Fujimoto M, Miyazaki Y, Nakatsuka R, Ikezoe T, Yokoyama A, Taguchi T, Shimada K: New findings of kinase switching in gastrointestinal stromal tumor under imatinib using phosphoproteomic analysis. Int J Cancer 2013, 113(11):2737-2743.
- [30]Nguyen THN, Brechenmacher L, Aldrich JT, Clauss TR, Gritsenko MA, Hixson KK, Libault M, Tanaka K, Yang F, Yao Q: Quantitative phosphoproteomic analysis of soybean root hairs inoculated with Bradyrhizobium japonicum. Mol Cell Proteomics 2012, 11(11):1140-1155.
- [31]Kosako H, Nagano K: Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev Proteomic 2011, 8(1):81-94.
- [32]Rudrabhatla P, Grant P, Jaffe H, Strong MJ, Pant HC: Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer's disease by iTRAQ. Faseb J 2010, 24(11):4396-4407.
- [33]Iwai LK, Benoist C, Mathis D, White FM: Quantitative phosphoproteomic analysis of T cell receptor signaling in diabetes prone and resistant mice. J Proteome Res 2010, 9(6):3135-3145.
- [34]Craig S, Beaton CD: A simple cryo‒SEM method for delicate plant tissues. J Microsc 1996, 182(2):102-105.
- [35]Wisacute JR: Universal sample preparation method for proteome analysis. Nat Methods 2009, 6(5):359-362.
- [36]Zhao PM, Wang LL, Han LB, Wang J, Yao Y, Wang HY, Du XM, Luo YM, Xia GX: Proteomic identification of differentially expressed proteins in the Ligon lintless mutant of upland cotton (Gossypium hirsutum L.). J Proteome Res 2009, 9(2):1076-1087.
- [37]Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJ: Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 2005, 4(7):873-886.
- [38]Sandberg A, Lindell G, Källström BN, Branca RM, Danielsson KG, Dahlberg M, Larson B, Forshed J, Lehtiö J: Tumor proteomics by multivariate analysis on individual pathway data for characterization of vulvar cancer phenotypes. Mol Cell Proteomics 2012, 11(7):1-14.
- [39]Lemeer S, Kunold E, Klaeger S, Raabe M, Towers MW, Claudes E, Arrey TN, Strupat K, Urlaub H, Kuster B: Phosphorylation site localization in peptides by MALDI MS/MS and the Mascot Delta Score. Anal Bioanal Chem 2012, 402(1):249-260.
- [40]Colaert N, Barsnes H, Vaudel M, Helsens K, Timmerman E, Sickmann A, Gevaert K, Martens L: Thermo-msf-parser: an open source java library to parse and visualize thermo proteome discoverer msf files. J Proteome Res 2011, 10(8):3840-3843.
- [41]Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S: Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004, 3(12):1154-1169.
- [42]The cotton gene index database ftp://occams.dfci.harvard.edu/pub/bio/tgi/data/Gossypium webcite
- [43]Beausoleil S, Villn J, Gerber S, Rush J, Gygi S: A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 2006, 24(10):1285-1292.
- [44]Edwards D, Stajich JE, Hansen D: Bioinformatics : tools and applications. New York: Springer; 2009.
- [45]Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res 2004, 14(6):1188-1190.
- [46]Schneider TD, Stephens RM: Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 1990, 18(20):6097-6100.
- [47]Schwartz D, Gygi SP: An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nat Biotechnol 2005, 23(11):1391-1398.
- [48]CompariMotif @ Bioware http://bioware.ucd.ie/~compass/biowareweb/Server_pages/comparimotif.php webcite
- [49]Edwards RJ, Davey NE, Shields DC: CompariMotif: quick and easy comparisons of sequence motifs. Bioinformatics 2008, 24(10):1307-1309.
- [50]Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A: High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 2008, 36(10):3420-3435.
- [51]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J: The Pfam protein families database. Nucleic Acids Res 2012, 40(1):290-301.
- [52]The plant transcription factor database http://planttfdb.cbi.pku.edu.cn/ webcite
- [53]Jin J, Zhang H, Kong L, Gao G, Luo J: PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 2014, 42(1):1182-1187.
- [54]The blast software package ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/ webcite
- [55]Larkin M, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
- [56]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
- [57]Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L: KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 2011, 39(suppl 2):316-322.
- [58]Reiland S, Messerli G, Baerenfaller K, Gerrits B, Endler A, Grossmann J, Gruissem W, Baginsky S: Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 2009, 150(2):889-903.
- [59]Potikha TS, Collins CC, Johnson DI, Delmer DP, Levine A: The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol 1999, 119(3):849-858.
- [60]Liu CC, Liu CF, Wang HX, Shen ZY, Yang CP, Wei ZG: Identification and analysis of phosphorylation status of proteins in dormant terminal buds of poplar. BMC Plant Biol 2011, 11(1):158. BioMed Central Full Text
- [61]Nühse TS, Stensballe A, Jensen ON, Peck SC: Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 2004, 16(9):2394-2405.
- [62]Facette MR, Shen Z, Björnsdóttir FR, Briggs SP, Smith LG: Parallel proteomic and phosphoproteomic analyses of successive stages of maize leaf development. Plant Cell 2013, 25(8):2798-2812.
- [63]Clevers H: Wnt/β-catenin signaling in development and disease. Cell 2006, 127(3):469-480.
- [64]Doré JJ, Edens M, Garamszegi N, Leof EB: Heteromeric and homomeric transforming growth factor-β receptors show distinct signaling and endocytic responses in epithelial cells. J Biol Chem 1998, 273(48):31770-31777.
- [65]FreemanCook KD, Autry C, Borzillo G, Gordon D, Barbacci-Tobin E, Bernardo V, Briere D, Clark T, Corbett M, Jakubczak J: Design of selective, ATP-competitive inhibitors of Akt. J Med Chem 2010, 53(12):4615-4622.
- [66]Marshall CJ: MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev 1994, 4(1):82-89.
- [67]Stenmark H, Olkkonen VM: The Rab GTPase family. Genome Biol 2001, 2(5):30071-30077.
- [68]PereiraLeal JB, Seabra MC: The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J Mol Biol 2000, 301(4):1077-1087.
- [69]Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L: A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 2005, 438(7070):1013-1016.
- [70]Dovas A, Couchman J: RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem J 2005, 390:1-9.
- [71]Wymer CL, Bibikova TN, Gilroy S: Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana. Plant J 1997, 12(2):427-439.
- [72]Huang QS, Wang HY, Gao P, Wang GY, Xia GX: Cloning and characterization of a calcium dependent protein kinase gene associated with cotton fiber development. Plant Cell Rep 2008, 27(12):1869-1875.
- [73]Hirose Y, Manley JL: RNA polymerase II and the integration of nuclear events. Gene Dev 2000, 14(12):1415-1429.
- [74]Hargreaves DC, Horng T, Medzhitov R: Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 2009, 138(1):129-145.
- [75]Jung JH, Seo PJ, Park CM: The E3 ubiquitin ligase HOS1 regulates Arabidopsis flowering by mediating CONSTANS degradation under cold stress. J Biol Chem 2012, 287(52):43277-43287.
- [76]Hennig L, Christner C, Kipping M, Schelbert B, Rücknagel KP, Grabley S, Küllertz G, Fischer G: Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry 1998, 37(17):5953-5960.
- [77]Iwasaki S, Takeda A, Motose H, Watanabe Y: Characterization of Arabidopsis decapping proteins AtDCP1 and AtDCP2, which are essential for post-embryonic development. Febs Lett 2007, 581(13):2455-2459.
- [78]Alahari SK, Schmidt H, Kaufer NF: The fission yeast prp4+ gene involved in pre-mRNA splicing codes for a predicted serine/threonine kinase and is essential for growth. Nucleic Acids Res 1993, 21(17):4079-4083.
- [79]Liu C, Li LC, Chen WQ, Chen X, Xu ZH, Bai SN: HDA18 affects cell fate in Arabidopsis root epidermis via histone acetylation at four kinase genes. Plant Cell 2013, 25(1):257-269.
- [80]Schmalstig JG, Hitz WD: Contributions of sucrose synthase and invertase to the metabolism of sucrose in developing leaves estimation by alternate substrate utilization. Plant Physiol 1987, 85(2):407-412.
- [81]Sheen J, Zhou L, Jang JC: Sugars as signaling molecules. Curr Opin Plant Biol 1999, 2(5):410-418.
- [82]Rolland F, Moore B, Sheen J: Sugar sensing and signaling in plants. Plant Cell 2002, 14(Suppl 1):185-205.
- [83]Albrecht G, Mustroph A: Localization of sucrose synthase in wheat roots: increased in situ activity of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia. Planta 2003, 217(2):252-260.
- [84]Salnikov VV, Grimson MJ, Seagull RW, Haigler CH: Localization of sucrose synthase and callose in freeze-substituted secondary-wall-stage cotton fibers. Protoplasma 2003, 221(4):175-184.
- [85]Nolte KD, Hendrix DL, Radin JW, Koch KE: Sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules. Plant Physiol 1995, 109(4):1285-1293.
- [86]Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX: Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 2006, 18(3):651-664.
- [87]Ruan YL, Llewellyn DJ, Furbank RT: Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 2003, 15(4):952-964.
- [88]Pang CY, Wang H, Pang Y, Xu C, Jiao Y, Qin YM, Western TL, Yu SX, Zhu YX: Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics 2010, 9(9):2019-2033.
- [89]Prigge MJ, Wagner DR: The Arabidopsis SERRATE gene encodes a zinc-finger protein required for normal shoot development. Plant Cell 2001, 13(6):1263-1280.
- [90]Hoke SM, Guzzo J, Andrews B, Brandl CJ: Systematic genetic array analysis links the Saccharomyces cerevisiae SAGA/SLIK and NuA4 component Tra1 to multiple cellular processes. BMC Genet 2008, 9(1):46. BioMed Central Full Text
- [91]Jin Y, Rodriguez AM, Stanton JD, Kitazono AA, Wyrick JJ: Simultaneous mutation of methylated lysine residues in histone H3 causes enhanced gene silencing, cell cycle defects, and cell lethality in Saccharomyces cerevisiae. Mol Cell Biol 2007, 27(19):6832-6841.
- [92]Nawy T, Lee JY, Colinas J, Wang JY, Thongrod SC, Malamy JE, Birnbaum K, Benfey PN: Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 2005, 17(7):1908-1925.
- [93]Wang Y, Zhang WZ, Song LF, Zou JJ, Su Z, Wu WH: Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 2008, 148(3):1201-1211.
- [94]The Arabidopsis information resource http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT3G01160 webcite