期刊论文详细信息
BMC Microbiology
Phylogenetic analysis of faecal microbiota from captive cheetahs reveals underrepresentation of Bacteroidetes and Bifidobacteriaceae
Geert Huys2  Geert PJ Janssens1  Joke Hollants3  Myriam Hesta1  Anne AMJ Becker1 
[1] Laboratory of Animal Nutrition, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium;BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, Ghent, Belgium;Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
关键词: Zoo nutrition;    Wildlife conservation;    Exotic felids;    Bacterial community sequencing;   
Others  :  1141903
DOI  :  10.1186/1471-2180-14-43
 received in 2013-05-07, accepted in 2014-01-24,  发布年份 2014
PDF
【 摘 要 】

Background

Imbalanced feeding regimes may initiate gastrointestinal and metabolic diseases in endangered felids kept in captivity such as cheetahs. Given the crucial role of the host’s intestinal microbiota in feed fermentation and health maintenance, a better understanding of the cheetah’s intestinal ecosystem is essential for improvement of current feeding strategies. We determined the phylogenetic diversity of the faecal microbiota of the only two cheetahs housed in an EAZA associated zoo in Flanders, Belgium, to gain first insights in the relative distribution, identity and potential role of the major community members.

Results

Taxonomic analysis of 16S rRNA gene clone libraries (702 clones) revealed a microbiota dominated by Firmicutes (94.7%), followed by a minority of Actinobacteria (4.3%), Proteobacteria (0.4%) and Fusobacteria (0.6%). In the Firmicutes, the majority of the phylotypes within the Clostridiales were assigned to Clostridium clusters XIVa (43%), XI (38%) and I (13%). Members of the Bacteroidetes phylum and Bifidobacteriaceae, two groups that can positively contribute in maintaining intestinal homeostasis, were absent in the clone libraries and detected in only marginal to low levels in real-time PCR analyses.

Conclusions

This marked underrepresentation is in contrast to data previously reported in domestic cats where Bacteroidetes and Bifidobacteriaceae are common residents of the faecal microbiota. Next to methodological differences, these findings may also reflect the apparent differences in dietary habits of both felid species. Thus, our results question the role of the domestic cat as the best available model for nutritional intervention studies in endangered exotic felids.

【 授权许可】

   
2014 Becker et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327172001987.pdf 1003KB PDF download
143KB Image download
Figure 1. 37KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Kawata K: Zoo animal feeding: a natural history viewpoint. Der Zool Garten 2008, 78:17-42.
  • [2]Munson L, Terio K, Worley M, Jago M, Bagot-Smith A, Marker L: Extrinsic factors significantly affect patterns of disease in free-ranging and captive cheetah (Acinonyx jubatus) populations. J Wildl Dis 2005, 41:542-548.
  • [3]Allen ME, Ullrey DE: Relationships among nutrition and reproduction and relevance for wild animals. Zoo Biol 2004, 23:475-487.
  • [4]Kotsch V, Kubber-Heiss A, Url A, Walzer C, Schmidt R: Diseases of captive cheetahs (Acinonyx jubatus) within the European Endangered Species Program (EEP) - a 22-year retrospective histopathological study. Wien Tierarztl Monatsschr 2002, 89:341-350.
  • [5]Garcia-Mazcorro JF, Lanerie DJ, Dowd SE, Paddock CG, Grutzner N, Steiner JM, Ivanek R, Suchodolski JS: Effect of a multi-species synbiotic formulation on fecal bacterial microbiota of healthy cats and dogs as evaluated by pyrosequencing. FEMS Microbiol Ecol 2011, 78:542-554.
  • [6]Gaggìa F, Mattarelli P, Biavati B: Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 2010, 141:S15-S28.
  • [7]Morris JG: Idiosyncratic nutrient requirements of cats appear to be diet-induced evolutionary adaptations. Nutr Res Rev 2002, 15:153-168.
  • [8]Vester BM, Beloshapka AN, Middelbos IS, Burke SL, Dikeman CL, Simmons LG, Swanson KS: Evaluation of nutrient digestibility and fecal characteristics of exotic felids fed horse- or beef-based diets: use of the domestic cat as a model for exotic felids. Zoo Biol 2010, 29:432-448.
  • [9]Dierenfeld ES: Nutrition of captive cheetahs - food composition and blood parameters. Zoo Biol 1993, 12:143-150.
  • [10]Zoran DL, Buffington CAT: Effects of nutrition choices and lifestyle changes on the well-being of cats, a carnivore that has moved indoors. J Am Vet Med Assoc 2011, 239:596-606.
  • [11]Vester BM, Swanson KS, Fahey GC: Nutrition of the Exotic Felid. Feedstuffs 2009, (20):57-59.
  • [12]Hooper LV, Midtvedt T, Gordon JI: How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 2002, 22:283-307.
  • [13]Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI: Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 2008, 6:776-788.
  • [14]Barry KA, Wojcicki BJ, Middelbos IS, Vester BM, Swanson KS, Fahey GC: Dietary cellulose, fructooligosaccharides, and pectin modify fecal protein catabolites and microbial populations in adult cats. J Anim Sci 2010, 88:2978-2987.
  • [15]Vester BM, Dalsing BL, Middelbos IS, Apanavicius CJ, Lubbs DC, Swanson KS: Faecal microbial populations of growing kittens fed high- or moderate-protein diets. Arch Anim Nutr 2009, 63:254-265.
  • [16]Lubbs DC, Vester BM, Fastinger ND, Swanson KS: Dietary protein concentration affects intestinal microbiota of adult cats: a study using DGGE and qPCR to evaluate differences in microbial populations in the feline gastrointestinal tract. J Anim Physiol Anim Nutr (Berl) 2009, 93:113-121.
  • [17]Depauw S, Bosch G, Hesta M, Whitehouse-Tedd K, Hendriks WH, Kaandorp J, Janssens GPJ: Fermentation of animal components in strict carnivores: a comparative study with cheetah fecal inoculum. J Anim Sci 2012, 90:2540-2548.
  • [18]Depauw S, Hesta M, Whitehouse-Tedd K, Vanhaecke L, Verbrugghe A, Janssens GPJ: Animal fibre: The forgotten nutrient in strict carnivores? First insights in the cheetah. J Anim Physiol Anim Nutr (Berl) 2013, 97:146-154.
  • [19]Pitcher DG, Saunders N, Owen RJ: Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989, 8:151-156.
  • [20]Vanhoutte T, Huys G, De Brandt E, Swings J: Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol Ecol 2004, 48:437-446.
  • [21]Brinkman BM, Hildebrand F, Kubica M, Goosens D, Del Favero J, Declercq W, Raes J, Vandenabeele P: Caspase deficiency alters the murine gut microbiome. Cell Death Dis 2011, 2:e220.
  • [22]Fierer N, Jackson JA, Vilgalys R, Jackson RB: Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 2005, 71:4117-4120.
  • [23]Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K: Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol 2008, 47:367-373.
  • [24]Matsuki T, Watanabe K, Fujimoto J, Kado Y, Takada T, Matsumoto K, Tanaka R: Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol 2004, 70:167-173.
  • [25]Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC: Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene conding for 16S ribosomal RNA. Nucleic Acids Res 1989, 17:7843-7853.
  • [26]Coenye T, Falsen E, Vancanneyt M, Hoste B, Govan JR, Kersters K, Vandamme P: Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Bacteriol 1999, 49(2):405-413.
  • [27]Huber T, Faulkner G, Hugenholtz P: Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 2004, 20:2317-2319.
  • [28]Gontcharova V, Youn E, Wolcott RD, Hollister EB, Gentry TJ, Dowd SE: Black box chimera check (B2C2): a windows-based software for batch depletion of chimeras from bacterial 16S datasets. Open Microbiol J 2010, 4:47-52.
  • [29]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 2011, 28:2731-2739.
  • [30]Dorman N: Citations. Biotechniques 2012, 52:403-410.
  • [31]Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM: The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009, 37(Database issue):D141-145.
  • [32]Good IJ: The population frequencies of species and the estimation of population parameters. Biometrika 1953, 40:237-264.
  • [33]Sekirov I, Russell SL, Antunes LCM, Finlay BB: Gut microbiota in health and disease. Physiol Rev 2010, 90:859-904.
  • [34]Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandezgarayzabal J, Garcia P, Cai J, Hippe H, Farrow JAE: The phylogeny of the genus Clostridium - proposal of 5 new genera and 11 new species combinations. Int J Syst Bacteriol 1994, 44:812-826.
  • [35]Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI: Evolution of mammals and their gut microbes. Science 2008, 320:1647-1651.
  • [36]Thomas F, Hehemann J-H, Rebuffet E, Czjzek M, Michel G: Environmental and gut bacteroidetes: the food connection. Front Microbiol 2011, 2:93.
  • [37]Tremaroli V, Bäckhed F: Functional interactions between the gut microbiota and host metabolism. Nature 2012, 489:242-249.
  • [38]Middelbos IS, Vester Boler BM, Qu A, White B, Swanson KS, Fahey GC: Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PLoS One 2010, 5:e9768.
  • [39]Swanson KS, Dowd SE, Suchodolski JS, Middelbos IS, Vester BM, Barry KA, Nelson KE, Torralba M, Henrissat B, Coutinho PM, Cann IKO, White BA, Fahey GC: Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. ISME J 2011, 5:639-649.
  • [40]Zhang HH, Chen L: Phylogenetic analysis of 16S rRNA gene sequences reveals distal gut bacterial diversity in wild wolves (Canis lupus). Mol Biol Rep 2010, 37:4013-4022.
  • [41]Schwab C, Cristescu B, Boyce MS, Stenhouse GB, Ganzle M: Bacterial populations and metabolites in the feces of free roaming and captive grizzly bears. Can J Microbiol 2009, 55:1335-1346.
  • [42]Handl S, Dowd SE, Garcia-Mazcorro JF, Steiner JM, Suchodolski JS: Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiol Ecol 2011, 76:301-310.
  • [43]Ritchie LE, Burke KF, Garcia-Mazcorro JF, Steiner JM, Suchodolski JS: Characterization of fecal microbiota in cats using universal 16S rRNA gene and group-specific primers for Lactobacillus and Bifidobacterium spp. Vet Microbiol 2010, 144:140-146.
  • [44]Tun HM, Brar MS, Khin N, Jun L, Hui RKH, Dowd SE, Leung FCC: Gene-centric metagenomics analysis of feline intestinal microbiome using 454 junior pyrosequencing. J Microbiol Methods 2012, 88:369-376.
  • [45]Schwab C, Gänzle M: Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears. Can J Microbiol 2011, 57:177-185.
  • [46]Zoran DL: The carnivore connection to nutrition in cats. J Am Vet Med Assoc 2002, 221:1559-1567.
  • [47]Wei G, Lu H, Zhou Z, Xie H, Wang A, Nelson K, Zhao L: The microbial community in the feces of the giant panda (Ailuropoda melanoleuca) as determined by PCR-TGGE profiling and clone library analysis. Microb Ecol 2007, 54:194-202.
  • [48]Suchodolski JS, Camacho J, Steiner JM: Analysis of bacterial diversity in the canine duodenum, jejunum, ileum, and colon by comparative 16S rRNA gene analysis. FEMS Microbiol Ecol 2008, 66:567-578.
  • [49]Schwab C, Cristescu B, Northrup JM, Stenhouse GB, Gänzle M: Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. PLoS One 2011, 6:e27905.
  • [50]Ritchie LE, Steiner JM, Suchodolski JS: Assessment of microbial diversity along the feline intestinal tract using 16S rRNA gene analysis. FEMS Microbiol Ecol 2008, 66:590-598.
  • [51]Hayashi H, Sakamoto M, Kitahara M, Benno Y: Diversity of the Clostridium coccoides group in human fecal microbiota as determined by 16S rRNA gene library. FEMS Microbiol Lett 2006, 257:202-207.
  • [52]Hoskins LC: Mucin degradation in the human gastrointestinal tract and its significance to enteric microbial ecology. Eur J Gastroenterol Hepatol 1992, 5:205-213.
  • [53]Liu C, Finegold SM, Song Y, Lawson P: Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydroge. Int J Syst Evol Microbiol 2008, 58(Pt 8):1896-1902.
  • [54]Barcenilla A, Pryde SE, Martin JC, Duncan H, Stewart CS, Henderson C, Harry J, Duncan SH, Flint HJ: Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 2000, 66:1654-1661.
  • [55]Meijer K, De Vos P, Priebe MG: Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care 2010, 13:715-721.
  • [56]Inness VL, McCartney AL, Khoo C, Gross KL, Gibson GR: Molecular characterisation of the gut microflora of healthy and inflammatory bowel disease cats using fluorescence in situ hybridisation with special reference to Desulfovibrio spp. J Anim Physiol Anim Nutr (Berl) 2007, 91:48-53.
  • [57]Janeczko S, Atwater D, Bogel E, Greiter-Wilke A, Gerold A, Baumgart M, Bender H, McDonough PL, McDonough SP, Goldstein RE, Simpson KW: The relationship of mucosal bacteria to duodenal histopathology, cytokine mRNA, and clinical disease activity in cats with inflammatory bowel disease. Vet Microbiol 2008, 128:178-193.
  • [58]Suchodolski JS, Dowd SE, Wilke V, Steiner JM, Jergens AE: 16S rRNA gene pyrosequencing reveals bacterial dysbiosis in the duodenum of dogs with idiopathic inflammatory bowel disease. PLoS One 2012, 7:e39333.
  • [59]Kitahara M, Takamine F, Imamura T, Benno Y: Clostridium hiranonis sp. nov., a human intestinal bacterium with bile acid 7alpha-dehydroxylating activity. Int J Syst Evol Microbiol 2001, 51(1):39-44.
  • [60]Queen EV, Marks SL, Farver TB: Prevalence of selected bacterial and parasitic agents in feces from diarrheic and healthy control cats from Northern California. J Vet Intern Med 2012, 26:54-60.
  • [61]Zentek J, Fricke S, Hewicker-trautwein M, Ehinger B, Amtsberg G, Baums C: Dietary protein source and manufacturing processes affect macronutrient digestibility, fecal consistency, and presence of fecal clostridium perfringens in adult dogs. J Nutr 2004, 134:2158S-2161S.
  • [62]Minamoto Y, Hooda S, Swanson KS, Suchodolski JS: Feline gastrointestinal microbiota. Anim Heal Res Rev 2012, 13:64-77.
  • [63]Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Harry J, Flint HJ: Two Routes of Metabolic Cross-Feeding between Bifidobacterium adolescentis and Butyrate-Producing Anaerobes from the Human Gut Two Routes of Metabolic Cross-Feeding between Bifidobacterium adolescentis and Butyrate-Producing Anaerobes from the Human Gut. Appl Environ Microbiol 2006, 72:3593-3599.
  • [64]Kolida S, Tuohy K, Gibson GR: Prebiotic effects of inulin and oligofructose. Br J Nutr 2007, 87:S193-S197.
  • [65]Itoh K, Mitsuoka T, Maejima K, Hiraga C, Nakano K: Comparison of fecal flora of cats based on different housing conditions with special reference to Bifidobacterium. Lab Anim 1984, 18:280-284.
  • [66]Desai AR, Musil KM, Carr AP, Hill JE: Characterization and quantification of feline fecal microbiota using cpn60 sequence-based methods and investigation of animal-to-animal variation in microbial population structure. Vet Microbiol 2009, 137:120-128.
  • [67]Huse SM, Dethlefsen L, Huber J, Mark Welch D, Welch DM, Relman D, Sogin ML: Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 2008, 4:2383-2400.
  • [68]Krogius-Kurikka L, Kassinen A, Paulin L, Corander J, Mäkivuokko H, Tuimala J, Palva A: Sequence analysis of percent G + C fraction libraries of human faecal bacterial DNA reveals a high number of Actinobacteria. BMC Microbiol 2009, 9:68. BioMed Central Full Text
  • [69]Zentek J, Marquart B, Pietrzak T, Ballèvre O, Rochat F: Dietary effects on bifidobacteria and Clostridium perfringens in the canine intestinal tract. J Anim Physiol Anim Nutr (Berl) 2003, 87:397-407.
  • [70]Endo A, Futagawa-Endo Y, Dicks LMT: Diversity of Lactobacillus and Bifidobacterium in feces of herbivores, omnivores and carnivores. Anaerobe 2010, 16:590-596.
  • [71]King J: Shigella flexneri: A practical review for zoo personnel. Zoo Biol 1998, 17:59-76.
  • [72]Green CE: Infectious Diseases of the Dog and Cat. 4th edition. Philadephia: Saunders; 2012:1376.
  文献评价指标  
  下载次数:6次 浏览次数:9次