期刊论文详细信息
BMC Cell Biology
Depletion of the actin bundling protein SM22/transgelin increases actin dynamics and enhances the tumourigenic phenotypes of cells
Steve J Winder2  Kathryn R Ayscough1  Jeelan S Moghraby3  Oliver Thompson2 
[1] Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK;Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK;College of Medicine, King AbdulAziz Medical City, National Guard Health Affairs, Riyadh, KSA
关键词: tumour suppressor;    reactive oxygen species;    cell motility;    invasion;    podosomes;   
Others  :  857017
DOI  :  10.1186/1471-2121-13-1
 received in 2011-10-13, accepted in 2012-01-18,  发布年份 2012
PDF
【 摘 要 】

Background

SM22 has long been studied as an actin-associated protein. Interestingly, levels of SM22 are often reduced in tumour cell lines, while they are increased during senescence possibly indicating a role for SM22 in cell fate decisions via its interaction with actin. In this study we aimed to determine whether reducing levels of SM22 could actively contribute to a tumourigenic phenotype.

Results

We demonstrate that in REF52 fibroblasts, decreased levels of SM22 disrupt normal actin organization leading to changes in the motile behaviour of cells. Interestingly, SM22 depletion also led to an increase in the capacity of cells to spontaneously form podosomes with a concomitant increase in the ability to invade Matrigel. In PC3 prostate epithelial cancer cells by contrast, where SM22 is undetectable, re-expression of SM22 reduced the ability to invade Matrigel. Furthermore SM22 depleted cells also had reduced levels of reactive oxygen species when under serum starvation stress.

Conclusions

These findings suggest that depletion of SM22 could contribute to tumourigenic properties of cells. Reduction in SM22 levels would tend to promote cell survival when cells are under stress, such as in a hypoxic tumour environment, and may also contribute to increases in actin dynamics that favour metastatic potential.

【 授权许可】

   
2012 Thompson et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723062156678.pdf 5319KB PDF download
121KB Image download
40KB Image download
37KB Image download
35KB Image download
47KB Image download
49KB Image download
83KB Image download
【 图 表 】

【 参考文献 】
  • [1]Lees-Miller JP, Heeley DH, Smillie LB, Kay CM: Isolation and characterization of an abundant and novel 22-kDa protein (SM22) from chicken gizzard smooth muscle. J Biol Chem 1987, 262:2988-2993.
  • [2]Shapland C, Hsuan JJ, Totty NF, Lawson D: Purification and Properties Of Transgelin - a Transformation and Shape Change Sensitive Actin-Gelling Protein. J Cell Biol 1993, 121(5):1065-1073.
  • [3]Pearlstone JR, Weber M, Lees-Miller JP, Carpenter MR, Smillie LB: Amino acid sequence of chicken gizzard smooth muscle SM22 alpha. J Biol Chem 1987, 262(13):5985-5991.
  • [4]Lawson D, Harrison M, Shapland C: Fibroblast transgelin and smooth muscle SM22 alpha are the same protein, the expression of which is down-regulated in many cell lines. Cell Motility and the Cytoskeleton 1997, 38(3):250-257.
  • [5]Assinder SJ, Stanton J-AL, Prasad PD: Transgelin: An actin-binding protein and tumour suppressor. Int J Biochem Cell Biol 2009, 41(3):482-486.
  • [6]Gimona M, Djinovic-Carugo K, Kranewitter W, Winder S: Functional plasticity of CH domains. FEBS Lett 2002, 513:98-106.
  • [7]Kranewitter WJ, Ylanne J, Gimona M: UNC-87 is an actin bundling protein. J Biol Chem 2001, 276:6306-6312.
  • [8]Gimona M, Winder SJ: Single calponin homology domains are not actin binding domains. Curr Biol 1998, 8:R674-675.
  • [9]Rozenblum GT, Gimona M: Calponins: Adaptable modular regulators of the actin cytoskeleton. Int J Biochem Cell Biol 2008, 40(10):1990-1995.
  • [10]Ayme-Southgate A, Lasko P, French C, Pardue ML: Characterization of the gene for mp20: a Drosophila muscle protein that is not found in asynchronous oscillatory flight muscle. J Cell Biol 1989, 108(2):521-531.
  • [11]Goodman A, Goode BL, Matsudaira P, Fink GR: The Saccharomyces cerevisiae Calponin/Transgelin Homolog Scp1 Functions with Fimbrin to Regulate Stability and Organization of the Actin Cytoskeleton. Mol Biol Cell 2003, 14:2617-2629.
  • [12]Winder SJ, Jess T, Ayscough KR: SCP1 encodes an actin bundling protein in yeast. Biochem J 2003, 375:287-295.
  • [13]Gourlay CW, Carpp LN, Timpson P, Winder SJ, Ayscough KR: A Role for the Actin Cytoskeleton in Cell Death and Ageing in Yeast. J Cell Biol 2004, 164:803-809.
  • [14]Thweatt R, Lumpkin CK, Goldstein S: A novel gene encoding a smooth muscle protein is overexpressed in senescent human fibroblasts. Biochem Biophys Res Commun 1992, 187:1-7.
  • [15]Simoes DDM, Gonos ES: Alterations of gene expression during in vitro ageing: The mammalian fibroblast model. Current Science 1998, 74(10):884-886.
  • [16]Dumont P, Burton M, Chen QM, Gonos ES, Frippiat C, Mazarati J-B, Eliaers F, Remacle J, Toussaint O: Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Rad Biol Med 2000, 28:361-373.
  • [17]Han M, Dong L-H, Zheng B, Shi J-H, Wen J-K, Cheng Y: Smooth muscle 22 alpha maintains the differentiated phenotype of vascular smooth muscle cells by inducing filamentous actin bundling. Life Sci 2009, 84(13):394-401.
  • [18]Gimona M, Buccione R: Adhesions that mediate invasion. Int J Biochem Cell Biol 2006, 38(11):1875.
  • [19]Kaverina I, Stradal TEB, Gimona M: Podosome formation in cultured A7r5 vascular smooth muscle cells requires Arp2/3-dependent de-novo actin polymerization at discrete microdomains. J Cell Sci 2003, 116(24):4915-4924.
  • [20]Jin L, Hastings N, Blackman B, Somlyo A: Mechanical properties of the extracellular matrix alter expression of smooth muscle protein LPP and its partner palladin; relationship to early atherosclerosis and vascular injury. J Muscle Res Cell Motil 2009, 30(1):41-55.
  • [21]Lener T, Burgstaller G, Crimaldi L, Lach S, Gimona M: Matrix-degrading podosomes in smooth muscle cells. Eur J Cell Biol 2006, 85:183-189.
  • [22]Thompson O, Kleino I, Crimaldi L, Gimona M, Saksela K, Winder SJ: Dystroglycan, Tks5 and Src mediated assembly of podosomes in myoblasts. PLoS One 2008, 3:e3638.
  • [23]Katsumi S, Shian-Ying S, Hiroyuki K, Rebecca SA, Masato F, Akinobu G, Haiyen EZ, Leland WKC: Reactive oxygen species mediate androgen receptor- and serum starvation-elicited downstream signaling of ADAM9 expression in human prostate cancer cells. Prostate 2007, 67(7):722-731.
  • [24]Lee S, Kim J, Kim T, Kim B, Lee M-S, Yoo Y: Serum deprivation-induced reactive oxygen species production is mediated by Romo1. Apoptosis 2010, 15(2):204-218.
  • [25]Yamamura H, Yoshikawa H, Tatsuta M, Akedo H, Takahashi K: Expression of the smooth muscle calponin gene in human osteosarcoma and its possible association with prognosis. Int J Cancer 1998, 79(3):245-250.
  • [26]Desai B, Ma T, Chellaiah MA: Invadopodia and Matrix Degradation, a New Property of Prostate Cancer Cells during Migration and Invasion. J Biol Chem 2008, 283(20):13856-13866.
  • [27]Prasad P, Stanton J-A, Assinder S: Expression of the actin-associated protein transgelin (SM22) is decreased in prostate cancer. Cell Tissue Res 2010, 339(2):337-347.
  • [28]Gheorghe DM, Aghamohammadzadeh S, Rooij IIS-d, Allwood EG, Winder SJ, Ayscough KR: Interactions between the Yeast SM22 Homologue Scp1 and Actin Demonstrate the Importance of Actin Bundling in Endocytosis. J Biol Chem 2008, 283(22):15037-15046.
  • [29]Lener T, Burgstaller G, Gimona M: The role of calponin in the gene profile of metastatic cells: inhibition of metastatic cell motility by multiple calponin repeats. FEBS Lett 2004, 556(1-3):221-226.
  • [30]Yamashiro S, Gimona M, Ono S: UNC-87, a calponin-related protein in C. elegans, antagonizes ADF/cofilin-mediated actin filament dynamics. J Cell Sci 2007, 120(17):3022-3033.
  • [31]Lin Y, Buckhaults PJ, Lee JR, Xiong H, Farrell C, Podolsky RH, Schade RR, Dynan WS: Association of the actin-binding protein transgelin with lymph node metastasis in human colorectal cancer. Neoplasia 2009, 11:864-873.
  • [32]Li N, Zhang J, Liang Y, Shao J, Peng F, Sun M, Xu N, Li X, Wang R, Liu S, et al.: A controversial tumor marker: is SM22 a proper biomarker for gastric cancer cells? J Proteome Res 2007, 6:3304-3312.
  • [33]Glen A, Evans CA, Gan CS, Cross SS, Hamdy FC, Gibbins J, Lippitt J, Eaton CL, Noirel J, Wright PC, et al.: Eight-plex iTRAQ analysis of variant metastatic human prostate cancer cells identifies candidate biomarkers of progression: An exploratory study. Prostate 2010, 70(12):1313-1332.
  • [34]Lee E-K, Han G-Y, Park HW, Song Y-J, Kim C-W: Transgelin Promotes Migration and Invasion of Cancer Stem Cells. J Proteome Res 2010, 9(10):5108-5117.
  • [35]Hazan RB, Qiao RUI, Keren R, Badano I, Suyama K: Cadherin Switch in Tumor Progression. Ann N Y Acad Sci 2004, 1014(1):155-163.
  • [36]Nair RR, Solway J, Boyd DD: Expression Cloning Identifies Transgelin (SM22) as a Novel Repressor of 92-kDa Type IV Collagenase (MMP-9) Expression. J Biol Chem 2006, 281(36):26424-26436.
  • [37]Shen J, Yang M, Ju D, Jiang H, Zheng J-P, Xu Z, Li L: Disruption of SM22 Promotes Inflammation After Artery Injury via Nuclear Factor {kappa}B Activation. Circ Res 2010, 106(8):1351-1362.
  • [38]Frippiat C, Chen QM, Zdanov S, Magalhaes J-P, Remacle J, Toussaint O: Subcytotoxic H2O2 Stress Triggers a Release of Transforming Growth Factor-beta 1, Which Induces Biomarkers of Cellular Senescence of Human Diploid Fibroblasts. J Biol Chem 2001, 276(4):2531-2537.
  • [39]Bonello T, Stehn J, Gunning P: New approaches to targeting the actin cytoskeleton for chemotherapy. Future Med Chem 2009, 1:1311-1331.
  • [40]Rao J, Li N: Microfilament actin remodeling as a potential target for cancer drug development. Curr Cancer Drug Targets 2004, 4:345-354.
  • [41]Thompson O, Moore CJ, Hussain S-A, Kleino I, Peckham M, Hohenester E, Ayscough KR, Saksela K, Winder SJ: Modulation of cell spreading and cell-substrate adhesion dynamics by dystroglycan. J Cell Sci 2010, 123:118-127.
  • [42]Mori K, Muto Y, Kokuzawa J, Yoshioka T, Yoshimura S, Iwama T, Okano Y, Sakai N: Neuronal protein NP25 interacts with F-actin. Neurosci Res 2004, 48(4):439-446.
  • [43]Batchelor CL, Higginson JR, Chen Y-J, Vanni C, Eva A, Winder SJ: Recruitment of Dbl by ezrin and dystroglycan drives membrane proximal Cdc42 activation and filopodia formation. Cell Cycle 2007, 6:353-363.
  • [44]Bryant RJ, Winder SJ, Cross SS, Hamdy FC, Cunliffe VT: The polycomb group protein EZH2 regulates actin polymerization in human prostate cancer cells. Prostate 2008, 68(3):255-263.
  • [45]Higginson JR, Thompson O, Winder SJ: Targeting of dystroglycan to the cleavage furrow and midbody in cytokinesis. Int J Biochem Cell Biol 2008, 40:892-900.
  文献评价指标  
  下载次数:77次 浏览次数:40次