期刊论文详细信息
BMC Genomics
Species and gene divergence in Littorina snails detected by array comparative genomic hybridization
Carl André2  Anders Tunlid3  Kerstin Johannesson2  Magnus Alm Rosenblad1  Johan Bentzer3  Björn Canbäck3  Tomas Johansson3  Marina Panova2 
[1] Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden;Department of Biological and Environmental Sciences - Tjärnö, Gothenburg University, Gothenburg, Sweden;Department of Biology, Microbial Ecology Group, Lund University, Lund, Sweden
关键词: Gene divergence;    Genome evolution;    Ecotypes;    Littorina;    Oligonucleotide arrays;    Comparative genomic hybridization;   
Others  :  1216263
DOI  :  10.1186/1471-2164-15-687
 received in 2014-02-06, accepted in 2014-08-11,  发布年份 2014
PDF
【 摘 要 】

Background

Array comparative genomic hybridization (aCGH) is commonly used to screen different types of genetic variation in humans and model species. Here, we performed aCGH using an oligonucleotide gene-expression array for a non-model species, the intertidal snail Littorina saxatilis. First, we tested what types of genetic variation can be detected by this method using direct re-sequencing and comparison to the Littorina genome draft. Secondly, we performed a genome-wide comparison of four closely related Littorina species: L. fabalis, L. compressa, L. arcana and L. saxatilis and of populations of L. saxatilis found in Spain, Britain and Sweden. Finally, we tested whether we could identify genetic variation underlying “Crab” and “Wave” ecotypes of L. saxatilis.

Results

We could reliably detect copy number variations, deletions and high sequence divergence (i.e. above 3%), but not single nucleotide polymorphisms. The overall hybridization pattern and number of significantly diverged genes were in close agreement with earlier phylogenetic reconstructions based on single genes. The trichotomy of L. arcana, L. compressa and L. saxatilis could not be resolved and we argue that these divergence events have occurred recently and very close in time. We found evidence for high levels of segmental duplication in the Littorina genome (10% of the transcripts represented on the array and up to 23% of the analyzed genomic fragments); duplicated genes and regions were mostly the same in all analyzed species. Finally, this method discriminated geographically distant populations of L. saxatilis, but we did not detect any significant genome divergence associated with ecotypes of L. saxatilis.

Conclusions

The present study provides new information on the sensitivity and the potential use of oligonucleotide arrays for genotyping of non-model organisms. Applying this method to Littorina species yields insights into genome evolution following the recent species radiation and supports earlier single-gene based phylogenies. Genetic differentiation of L. saxatilis ecotypes was not detected in this study, despite pronounced innate phenotypic differences. The reason may be that these differences are due to single-nucleotide polymorphisms.

【 授权许可】

   
2014 Panova et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150629140738660.pdf 2212KB PDF download
Figure 9. 93KB Image download
Figure 8. 69KB Image download
Figure 7. 35KB Image download
Figure 6. 18KB Image download
Figure 5. 60KB Image download
Figure 4. 38KB Image download
Figure 4. 20KB Image download
Figure 2. 63KB Image download
Figure 1. 51KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 4.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Nosil P, Schluter D: The genes underlying the process of speciation. Trends Ecol Evol 2011, 26:160-167.
  • [2]Avise JC, Ball MR Jr: Principles of genealogical concordance in species concepts and biological taxonomy. In Oxford Survey of Evolutionary Biology. Edited by Futuyma DJ, Antonovics J. New York: Oxford University Press; 1990:45-67.
  • [3]Knowles LL, Carstens BC: Delimiting species without monophyletic gene trees. Syst Biol 2007, 56:887-895.
  • [4]Shaffer HB, Thomson RC: Delimiting species in recent radiations. Syst Biol 2007, 56:896-906.
  • [5]Nichols R: Gene tress and species trees are not the same. Trends Ecol Evol 2001, 16:358-364.
  • [6]Degnan JH, Rosenberg NA: Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol 2009, 24:332-340.
  • [7]Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Gonzalo G: Broad phylogenetic sampling improves resolution of the animal tree of life. Nature 2008, 452:745-750.
  • [8]Emerson KJ, Merz CR, Catchen JM, Hohenlohe PA, Cresko WA, Bradshaw WE, Holzapfel CM: Resolving post-glacial phylogeography using high-throughput sequencing. Proc Natl Acad Sci U S A 2010, 107:16196-16200.
  • [9]McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT: Applications of the next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol 2013, 66:526-538.
  • [10]Ballard JWO, Whitlock MC: The incomplete natural history of mitochondria. Mol Ecol 2004, 13:729-744.
  • [11]Galtier N, Nabholz B, Glemin S, Hurst GDD: Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 2009, 18:4541-4550.
  • [12]Nordborg M, Innan H: The genealogy of sequences containing multiple sites subject to strong selection in a subdivided population. Genetics 2003, 163:1201-1213.
  • [13]Nielsen R: Molecular signatures of natural selection. Annu Rev Genet 2005, 39:197-218.
  • [14]Hohenlohe PA, Phillips PC, Cresco WA: Using population genomics to detect selection in natural populations: key concepts and methodological considerations. Int J Plant Sci 2010, 171:1059-1071.
  • [15]Nosil P, Funk DJ, Ortiz-Barrientos D: Divergent selection and heterogeneous genomic divergence. Mol Ecol 2009, 18:375-402.
  • [16]Via S: Natural selection in action during speciation. Proc Natl Acad Sci U S A 2009, 106:9939-9946.
  • [17]Smadja CM, Butlin RK: A framework for comparing processes with speciation in the presence of gene flow. Mol Ecol 2011, 20:5123-5140.
  • [18]Nosil P, Feder JL: Genomic divergence during speciation: causes and consequences. Philos Trans R Soc Lond B Biol Sci 2012, 367:332-342.
  • [19]Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, Boughman JW, Brelsford A, Buerkle CA, Buggs R, Butlin RK, Dieckmann U, Eroukhmanoff F, Grill A, Cahan SH, Hermansen JS, Hewitt G, Hudson AG, Jiggins C, Jones J, Keller B, Marczewski T, Mallet J, Martinez-Rodriguez P, Most M, Mullen S, Nichols R, Nolte AW, Parisod C, Pfennig K, et al.: Hybridization and speciation. J Evol Biol 2013, 26:229-246.
  • [20]Fan S, Elmer KR, Meyer A: Genomics of adaptation and speciation in cichlid fishes: recent advances and analyses in African and Neotropical lineages. Philos Trans R Soc Lond B Biol Sci 2012, 367:385-394.
  • [21]Nadeau NJ, Whibley A, Jones RT, Davey JW, Dasmahapatra KK, Baxter SW, Quail MA, Joron M, Ffrench-Constant RH, Blaxter ML, Mallet J, Jiggins CD: Genomic islands of divergence in hybridizing Heliuconius butterflies identified by large-scale targeted sequencing. Philos Trans R Soc Lond B Biol Sci 2012, 367:343-353.
  • [22]Renaut S, Maillet N, Normandeau E, Sauvage C, Derome N, Rogers SM, Bernatchez L: Genome-wide patterns of divergence during speciation: the lake whitefish case study. Philos Trans R Soc Lond B Biol Sci 2012, 367:354-363.
  • [23]Strasburg JL, Sherman NA, Wright KM, Moyle LC, Willis JH, Rieseberg LH: What can patterns of differentiation across plant genomes tell us about adaptation and speciation? Philos Trans R Soc Lond B Biol Sci 2012, 367:364-373.
  • [24]Hohenlohe PA, Bassham S, Currey M, Cresko WA: Extensive linkage disequilibrium and parallel adaptive divergence across threespine stickleback genomes. Philos Trans R Soc Lond B Biol Sci 2012, 367:395-408.
  • [25]Reid DG: Systematic and Evolution of Littorina. London: Ray Society; 1996.
  • [26]Reid DG, Rumbak E, Thomas RH: DNA, morphology and fossils: phylogeny and evolutionary rates of the gastropod genus Littorina. Philos Trans R Soc Lond B Biol Sci 1996, 351:877-895.
  • [27]Kemppainen P, Panova M, Hollander J, Johannesson K: Complete lack of mitochondrial divergence between two species of NE Atlantic marine intertidal gastropods. J Evol Biol 2009, 22:2000-2011.
  • [28]Doellman MM, Trussel GC, Grahame JW, Vollmer SV: Phylogenetic analysis reveals a deep lineage split within North Atlantic Littorina saxatilis. Proc R Soc Lond B Biol Sci 2011, 278:3175-3183.
  • [29]Panova M, Blakeslee AMH, Miller AW, Mäkinen T, Ruiz GM, Johannesson K, André C: Glacial history of the North Atlantic marine snail, Littorina saxatilis, inferred from distribution of mitochondrial DNA lineages. PLoS ONE 2011, 6:e17511.
  • [30]Mikhailova NA, Gracheva YA, Backeljau T, Granovitch AI: A potential species-specific molecular marker suggests interspecific hybridization between the sibling species Littorina arcana and L. saxatilis (Mollusca, Caenogastropoda) in natural populations. Genetica 2009, 137:333-340.
  • [31]Reid DG, Dyal P, Williams ST: A global molecular phylogeny of 147 periwinkle species (Gastropoda, Littorininae). Zool Scripta 2012, 41:125-136.
  • [32]Johannesson K: Evolution in Littorina: ecology matters. J Sea Research 2003, 49:107-117.
  • [33]Butlin RK, Galindo J, Grahame JW: Sympatric, parapatric or allopatric: the most important way to classify speciation? Philos Trans R Soc Lond B Biol Sci 2008, 363:2997-3007.
  • [34]Johannesson K, Panova M, Kemppainen P, André C, Rolán-Alvarez E, Butlin RK: Repeated evolution of reproductive isolation in a marine snail: unveiling mechanisms of speciation. Philos Trans R Soc Lond B Biol Sci 2010, 365:1735-1747.
  • [35]Butlin RK, Saura M, Charrier G, Jackson B, André C, Caballero A, Coyne JA, Galindo J, Grahame JW, Hollander J, Kemppainen P, Martínez-Fernández M, Panova M, Quesada H, Johannesson K, Rolán-Alvarez E: Parallel evolution of local adaptation and reproductive isolation in the face of gene flow. Evolution 2014, 68:935-949.
  • [36]Galindo J, Grahame JW, Butlin RK: An EST-based genome scan using 454 sequencing in the marine snail Littorina saxatilis. J Evol Biol 2010, 23:2004-2016.
  • [37]Wilding CS, Butlin RK, Grahame JW: Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J Evol Biol 2001, 14:611-619.
  • [38]Wood HM, Grahame JW, Humphray S, Rogers J, Butlin RK: Sequence differentiation in regions identified by a genome scan for local adaptation. Mol Ecol 2008, 17:3123-3135.
  • [39]Gresham D, Dunham MJ, Botstein D: Comparing whole genomes using DNA microarrays. Nat Rev Genet 2008, 9:291-302.
  • [40]Aradhya S, Cherry AM: Array-based comparative genomic hybridization: clinical contexts for targeted and whole-genome designs. Genet Med 2007, 9:553-559.
  • [41]Tan JC, Patel JJ, Tan A, Blain JC, Albert TJ, Lobo NF, Ferdig MT: Optimizing comparative genomic hybridization probes for genotyping and SNP detection in Plasmodium falciparum. Genomics 2009, 93:543-550.
  • [42]McDonnell SK, Riska SM, Klee EW, Thorland EC, Kay NE, Thibodeau SN, Parker AS, Eckel-Passow JE: Experimental designs for array comparative genomic hybridization technology. Cytogenet Genome Res 2013, 139:250-257.
  • [43]Rennie C, Noyes HA, Kemp SJ, Hulme H, Brass A, Hoyle DC: Strong position-dependent effects of sequence mismatches on signal ratios measured using long oligonucleotide microarrays. BMC Genomics 2008, 9:317.
  • [44]Flibotte S, Edgley ML, Maydan J, Taylor J, Zapf R, Waterston R, Moerman DG: Rapid high resolution single nucleotide polymorphism-comparative genome hybridization mapping in Caenorhabditis elegans. Genetics 2009, 181:33-37.
  • [45]Vitikainen M, Arvas M, Pakula T, Oja M, Penttilä M, Saloheimo M: Array comparative genomic hybridization analysis of Trichoderma reesei strains with enhanced cellulase production properties. BMC Genomics 2010, 11:441.
  • [46]Kane MD, Jatkoe TA, Stumpf CR, Lu J, Thomas JD, Madore SJ: Assessment of sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res 2000, 28:4552-4557.
  • [47]Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW, Lefkowitz SM, Ziman M, Schelter JM, Meyer MR, Kobayashi S, Davis C, Dai H, He YD, Stephaniants SB, Cavet G, Walker WL, West A, Coffey E, Shoemaker DD, Stoughton R, Blanchard AP, Friend SH, Linsley PS: Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 2001, 19:342-347.
  • [48]Letowski J, Brousseau R, Masson L: Designing better probes: effect of probe size, mismatch position and number on hybridization in DNA oligonucleotide microarrays. J Microbiol Methods 2004, 57:269-278.
  • [49]Carter B, Wu G, Woodward MJ, Anjum MF: A process for analysis of microarray comparative genomics hybridization studies for bacterial genomes. BMC Genomics 2008, 9:53.
  • [50]Yu P, Wang C-H, Xu Q, Feng Y, Yuan X-P, Yu H-Y, Wang Y-P, Tang S-X, Wei X-H: Genome-wide copy number variations in Oriza sativa L. BMC Genomics 2013, 14:649.
  • [51]Le Quéré A, Astrup-Eriksen K, Rajashekar B, Schützendübel A, Canbäck B, Johansson T, Tunlid A: Screening for rapidly evolving genes in the ectomycorrhizal fungus Paxillus involutus using cDNA microarrays. Mol Ecol 2006, 15:535-550.
  • [52]Hedh J, Johansson T, Tunlid A: Variation in host specificity and gene content in strains from genetically isolated lineages of the ectomycorrhizal fungus Paxillus involutus s. lat. Mycorrhiza 2009, 19:549-558.
  • [53]LSD - The Littorina sequence database [http://mbio-serv2.mbioekol.lu.se/Littorina1/ webcite]
  • [54]Canbäck B, André C, Galindo J, Johannesson K, Johansson T, Panova M, Tunlid A, Butlin R: The Littorina sequence database (LSD) – an online resource for genomic data. Mol Ecol Resour 2012, 12:142-148.
  • [55]Wilding CS, Mill PJ, Grahame JW: Partial sequence of the mitochondrial genome of Littorina saxatilis: relevance to gastropod phylogenetics. J Mol Evol 1999, 48:348-359.
  • [56]Sokolov EP, Sokolova IM, Portner HO: Polymorphic microsatellite DNA markers from the marine gastropod Littorina saxatilis. Mol Ecol Notes 2002, 2:27-29.
  • [57]Tie AD, Boulding EG, Naish KA: Polymorphic microsatellite DNA markers for the marine gastropod Littorina subrotundata. Mol Ecol 2000, 9:108-110.
  • [58]Panova M, Hollander J, Johannesson K: Site-specific genetic divergence in parallel hybrid zones suggests nonallopatric evolution of reproductive barriers. Mol Ecol 2006, 15:4021-4031.
  • [59]Mäkinen T, Panova M, Johannesson K, Tatarenkov A, Appelqvist C, André C: Genetic differentiation on multiple spatial scales in an ecotype-forming marine snail with limited dispersal: Littorina saxatilis. Biol J Linn Soc Lond 2008, 94:31-40.
  • [60]Levitan DR, Grosberg RK: The analysis of paternity and maternity in the marine hydrozoan Hydractinia symbiolongicarpus using randomly amplified polymorphic DNA (RAPD) markers. Mol Ecol 1993, 2:315-326.
  • [61]Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu TM, Bao W, Fang H, Kawasaki ES, Hager J, Tikhonova IR, Walker SJ, Zhang LA, Hurban P, de Longuevill F, Fuscoe JC, Tong WD, Shi LM, Wolfinger RD: Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol 2006, 24:1140-1150.
  • [62]Buffart TE, Israeli D, Tijssen M, Vosse SJ, Mrsic A, Meijer GA, Ylstra B: Across array comparative genomic hybridizations: a strategy to reduce reference sample channel hybridization. Genes Chromosomes Cancer 2008, 47:994-1004.
  • [63]Irizarry RA, Hobbs B, Colin F, Beazer-Barclay YD, Antonellis K, Scherf U, Speed TP: Exploration, normalization and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4:249-264.
  • [64]Bolstad BM, Irizarry RA, Åstrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array based on variance and bias. Bioinformatics 2003, 19:185-193.
  • [65]Pelz CR, Kulesz-Martin M, Bagby G, Sears RC: Global rank-invariant set normalization (GRSN) to reduce systematic distortions in microarray data. BMC Bioinformatics 2008, 9:520.
  • [66]Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P, Afshari C, Paules RS: Assessing gene significance from cDNA microarray expression data via mixed models. J Comp Biol 2001, 8:625-637.
  • [67]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a powerful and practical approach to multiple testing. J R Stat Soc Series B Stat Methodol 1995, 57:289-300.
  • [68]Wu H, Yang H, Sheppard K, Churchill G, Kerr K, Cui X: Tools for analyzing Micro Array experiments. R package version 1.33.2. [http://research.jax.org/faculty/churchill webcite]
  • [69]R Development Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2012. [http://www.R-project.org webcite]
  • [70]Paradis E, Claude J, Strimmer K: APE: analyses of phylogenetics and evolution in R language. Bioinformatics 2004, 20:289-290.
  • [71]Hulsen T, de Vlieg J, Alkema W: BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 2008, 9:488.
  • [72]The Linneaus Centre for Marine Evolutionary Biology at Gothenburg University [http://www.cemeb.science.gu.se webcite]
  • [73]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [74]Benaglia T, Chauveau D, Hunter DR, Young DS: mixtools: an R package for analyzing mixture models. J Stat Softw 2009, 32:1-29.
  • [75]Vitturi R, Libertini A, Panozzo M, Mezzapelle G: Karyotype analysis and genome size in three Mediterranean species of periwinkles (Prosobranchia: Mesogastropoda). Malacologia 1995, 37:123-132.
  • [76]García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S, Dopazo J, Meyer TF, Conesa A: Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 2012, 28:2678-2679.
  • [77]Knight AJ, Ward RD: The genetic relationships of the three taxa in the Littorina saxatilis species complex (Prosobranchia: Littorinidae). J Molluscan Stud 1991, 57:81-91.
  • [78]Small MP, Gosling EM: Genetic structure and relationships in the snail species complex Littorina arcana Hannaford Ellis, L. compressa Jeffreys and L. saxatilis (Olivi) in the British Isles using SSCPs of cytochrome-b fragments. Heredity 2000, 84:692-701.
  • [79]Wilding CS, Grahame JW, Mill PJ: Mitochondrial DNA CoI haplotype variation in sibling species of rough periwinkles. Heredity 2000, 85:62-74.
  • [80]Wilding CS, Grahame JW, Mill PJ: Nuclear DNA restriction site polymorphisms and the phylogeny and population structure of an intertidal snail species complex (Littorina). Hereditas 2000, 133:9-18.
  • [81]Zink RM, Barrowclough GF: Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 2008, 17:2107-2121.
  • [82]Baker AJ, Tavares ES, Elbourne RF: Countering criticisms of single mitochondrial DNA barcoding in birds. Mol Ecol Resour 2009, 9:257-268.
  • [83]Janson K: Genetic and environmental effects on the growth rate of Littorina saxatilis Olivi. Mar Biol 1982, 69:73-78.
  • [84]Johannesson B, Johannesson K: Population differences in behaviour and morphology in Littorina saxatilis: Phenotypic plasticity or genetic differentiation? J Zool 1996, 240:475-493.
  • [85]Carballo M, García C, Rolán-Alvarez E: Heritability of shell traits in wild Littorina saxatilis populations: results across a hybrid zone. J Shellfish Research 2001, 20:415-422.
  • [86]Conde-Padín P, Carvajal-Rodríguez A, Carballo M, Caballero A, Rolán-Alvarez E: Genetic variation for shell traits in a direct-developing marine snail involved in a putative sympatric ecological speciation process. Evol Ecol 2007, 21:635-650.
  • [87]Grahame JW, Wilding CS, Butler RK: Adaptation to a steep environmental gradient and an associated barrier to gene exchange in Littorina saxatilis. Evolution 2006, 60:268-278.
  • [88]Quesada H, Posada D, Caballero A, Morán P, Rolán-Alvarez E: Phylogenetic evidence for multiple sympatric ecological diversification in a marine snail. Evolution 2007, 61:1600-1612.
  • [89]Hoekstra HE, Coyne JA: The locus of evolution: Evo devo and the genetics of adaptation. Evolution 2007, 61:995-1016.
  • [90]Wray GA: The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 2007, 8:206-216.
  • [91]Tatarenkov A, Johannesson K: Micro- and macrogeographical allozyme variation in Littorina fabalis; do sheltered and exposed forms hybridize? Biol J Linn Soc Lond 1999, 67:199-212.
  • [92]Johannesson K, Mikhailova N: Habitat-related genetic substructuring in a marine snail (Littorina fabalis) involving a tight link between an allozyme and a DNA locus. Biol J Linn Soc Lond 2004, 81:301-306.
  • [93]Hu H, Bandyopadhyay PK, Olivera BM, Yandell M: Characterization of the Conus bullatus genome and its venom-duct transcriptome. BMC Genomics 2011, 12:60.
  • [94]Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PWH, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, et al.: The oyster genome reveals stress adaptation and complexity of shell formation. Nature 2012, 490:49-54.
  • [95]GEO - The NCBI Gene Expression Omnibus [http://www.ncbi.nlm.nih.gov/geo webcite]
  • [96]Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Edgar R: NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 2009, 37:D885-D890.
  文献评价指标  
  下载次数:112次 浏览次数:22次