期刊论文详细信息
BMC Systems Biology
Identifying reaction modules in metabolic pathways: bioinformatic deduction and experimental validation of a new putative route in purine catabolism
Bernard Labedan3  Christianne Legrain1  Raphaël Dutoit1  Matthieu Barba2 
[1] Institut de Recherches Microbiologiques J.-M. Wiame IRMW, Campus CERIA, Av. E. Gryson 1, 1070, Brussels, Belgium;present address: Laboratoire de Biométrie et Biologie Évolutive, CNRS UMR 5558, Université Claude Bernard Lyon 1, 69622, Villeurbanne Cedex, France;present address: Bioinformatique, Laboratoire de Recherche en Informatique, CNRS UMR 8623, Université Paris Sud, Bâtiment 650, 91405, Orsay Cedex, France
关键词: Rubrobacter xylanophilus;    Functional annotation;    Reaction module;    Purine metabolism;    Pyrimidine metabolism;    Dihydroorotase dehydrogenase;    Cyclic amidohydrolases;    Dihydroorotase;   
Others  :  1142070
DOI  :  10.1186/1752-0509-7-99
 received in 2013-06-20, accepted in 2013-09-25,  发布年份 2013
PDF
【 摘 要 】

Background

Enzymes belonging to mechanistically diverse superfamilies often display similar catalytic mechanisms. We previously observed such an association in the case of the cyclic amidohydrolase superfamily whose members play a role in related steps of purine and pyrimidine metabolic pathways. To establish a possible link between enzyme homology and chemical similarity, we investigated further the neighbouring steps in the respective pathways.

Results

We identified that successive reactions of the purine and pyrimidine pathways display similar chemistry. These mechanistically-related reactions are often catalyzed by homologous enzymes. Detection of series of similar catalysis made by succeeding enzyme families suggested some modularity in the architecture of the central metabolism. Accordingly, we introduce the concept of a reaction module to define at least two successive steps catalyzed by homologous enzymes in pathways alignable by similar chemical reactions. Applying such a concept allowed us to propose new function for misannotated paralogues. In particular, we discovered a putative ureidoglycine carbamoyltransferase (UGTCase) activity. Finally, we present experimental data supporting the conclusion that this UGTCase is likely to be involved in a new route in purine catabolism.

Conclusions

Using the reaction module concept should be of great value. It will help us to trace how the primordial promiscuous enzymes were assembled progressively in functional modules, as the present pathways diverged from ancestral pathways to give birth to the present-day mechanistically diversified superfamilies. In addition, the concept allows the determination of the actual function of misannotated proteins.

【 授权许可】

   
2013 Barba et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327211339989.pdf 2434KB PDF download
Figure 8. 65KB Image download
Figure 7. 45KB Image download
Figure 6. 44KB Image download
Figure 5. 94KB Image download
Figure 4. 103KB Image download
Figure 3. 100KB Image download
Figure 2. 88KB Image download
Figure 1. 106KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Schmidt S, Sunyaev S, Bork P, Dandekar T: Metabolites: a helping hand for pathway evolution? Trends Biochem Sci 2003, 28:336-341.
  • [2]Alves R, Chaleil RAG, Sternberg MJE: Evolution of enzymes in metabolism: a network perspective. J Mol Biol 2002, 320:751-770.
  • [3]Fani R, Fondi M: Origin and evolution of metabolic pathways. Phys Life Rev 2009, 6:23-52.
  • [4]Khersonsky O, Tawfik DS: Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 2010, 79:471-505.
  • [5]Ohno S: Evolution by Gene duplication. New-York: Springer-Verlag; 1970.
  • [6]Hughes AL: Gene duplication and the origin of novel proteins. Proc Natl Acad Sci U S A 2005, 102:8791-8792.
  • [7]Glasner ME, Gerlt JA, Babbitt PC: Evolution of enzyme superfamilies. Curr Opin Chem Biol 2006, 10:492-497.
  • [8]Jensen RA: Enzyme recruitment in evolution of new function. Annu Rev Microbiol 1976, 30:409-425.
  • [9]O’Brien PJ, Herschlag D: Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol 1999, 6:R91-R105.
  • [10]Khersonsky O, Roodveldt C, Tawfik DS: Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol 2006, 10:498-508.
  • [11]Khersonsky O, Malitsky S, Rogachev I, Tawfik DS: Role of chemistry versus substrate binding in recruiting promiscuous enzyme functions. Biochemistry 2011, 50:2683-2690.
  • [12]Barba M, Glansdorff N, Labedan B: Evolution of cyclic amidohydrolases: a highly diversified superfamily. J Mol Evol 2013, 77:70-80.
  • [13]Seibert CM, Raushel FM: Structural and catalytic diversity within the amidohydrolase superfamily. Biochemistry 2005, 44:6383-6391.
  • [14]Nam SH, Park HS, Kim HS: Evolutionary relationship and application of a superfamily of cyclic amidohydrolase enzymes. Chem Rec 2005, 5:298-307.
  • [15]Lohkamp B, Andersen B, Piskur J, Dobritzsch D: The crystal structures of dihydropyrimidinases reaffirm the close relationship between cyclic amidohydrolases and explain their substrate specificity. J Biol Chem 2006, 281:13762-13776.
  • [16]Kim GJ, Lee DE, Kim HS: Functional expression and characterization of the two cyclic amidohydrolase enzymes, allantoinase and a novel phenylhydantoinase, from Escherichia coli. J Bacteriol 2000, 182:7021-7028.
  • [17]Hartwell LH, Hopfield JJ, Leibler S, Murray AW: From molecular to modular cell biology. Nature 1999, 402:C47-C52.
  • [18]Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL: Hierarchical organization of modularity in metabolic networks. Science 2002, 297:1551-1555.
  • [19]The UniProt Consortium: Ongoing and future developments at the universal protein resource. Nucleic Acids Res 2011, 39:D214-D219. http://www.uniprot.org/ webcite
  • [20]Björnberg O, Rowland P, Larsen S, Jensen KF: Active site of dihydroorotate dehydrogenase a from lactococcus lactis investigated by chemical modification and mutagenesis. Biochemistry 1997, 36:16197-16205.
  • [21]Sørensen G, Dandanell G: A new type of dihydroorotate dehydrogenase, type 1S, from the thermoacidophilic archaeon Sulfolobus solfataricus. Extremophiles 2002, 6:245-251.
  • [22]Hidese R, Mihara H, Kurihara T, Esaki N: Escherichia coli dihydropyrimidine dehydrogenase is a novel NAD-dependent heterotetramer essential for the production of 5,6-dihydrouracil. J Bacteriol 2011, 193:989-993.
  • [23]Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ: STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013, 41:D808-D815. http://string-db.org/ webcite
  • [24]Xi H, Schneider BL, Reitzer L: Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage. J Bacteriol 2000, 182:5332-5341.
  • [25]Labedan B, Boyen A, Baetens M, Charlier D, Chen P, Cunin R, Durbeco V, Glansdorff N, Herve G, Legrain C, Liang Z, Purcarea C, Roovers M, Sanchez R, Toong TL, Van de Casteele M, van Vliet F, Xu Y, Zhang YF: The evolutionary history of carbamoyltransferases: a complex set of paralogous genes was already present in the last universal common ancestor. J Mol Evol 1999, 49:461-473.
  • [26]Labedan B, Xu Y, Naumoff DG, Glansdorff N: Using quaternary structures to assess the evolutionary history of proteins: the case of the aspartate carbamoyltransferase. Mol Biol Evol 2004, 21:364-373.
  • [27]Naumoff DG, Xu Y, Glansdorff N, Labedan B: Retrieving sequences of enzymes experimentally characterized but erroneously annotated: the case of the putrescine carbamoyltransferase. BMC Genomics 2004, 5:52. BioMed Central Full Text
  • [28]Chen J, Cheng C, Xia Y, Zhao H, Fang C, Shan Y, Wu B, Fang W: Lmo0036, An ornithine and putrescine carbamoyltransferase in Listeria monocytogenes, participates in arginine deiminase and agmatine deiminase pathways and mediates acid tolerance. Microbiology 2011, 157:3150-3161.
  • [29]Polo LM, Gil-Ortiz F, Cantín A, Rubio V: New insight into the transcarbamylase family: the structure of putrescine transcarbamylase, a key catalyst for fermentative utilization of agmatine. PLoS One 2012, 7:e31528.
  • [30]Shi D, Yu X, Zhao G, Ho J, Lu S, Allewell NM, Tuchman M: Crystal structure and biochemical properties of putrescine carbamoyltransferase from Enterococcus faecalis: assembly, active site, and allosteric regulation. Proteins 2012, 80:1436-1447.
  • [31]Li Y, Jin Z, Yu X, Allewell NM, Tuchman M, Shi D: The ygeW encoded protein from Escherichia coli is a knotted ancestral catabolic transcarbamylase. Proteins 2011, 79:2327-2334.
  • [32]Shi D, Yu X, Roth L, Morizono H, Tuchman M, Allewell NM: Structures of N-acetylornithine transcarbamoylase from xanthomonas campestris complexed with substrates and substrate analogs imply mechanisms for substrate binding and catalysis. Proteins 2006, 64:532-542.
  • [33]Shi D, Morizono H, Cabrera-Luque J, Yu X, Roth L, Malamy MH, Allewell NM, Tuchman M: Structure and catalytic mechanism of a novel N-succinyl-L-ornithine transcarbamylase in arginine biosynthesis of Bacteroides fragilis. J Biol Chem 2006, 281:20623-20631.
  • [34]Martínez-Rodríguez S, Clemente-Jiménez JM, Rodríguez-Vico F, Las Heras-Vázquez FJ: Molecular cloning and biochemical characterization of L-N-carbamoylase from sinorhizobium meliloti CECT4114. J Mol Microbiol Biotechnol 2005, 9:16-25.
  • [35]Cusa E, Obradors N, Baldoma L, Badia J, Aguilar J: Genetic analysis of a chromosomal region containing genes required for assimilation of allantoin nitrogen and linked glyoxylate metabolism in Escherichia coli. J Bacteriol 1999, 181:7479-7484.
  • [36]Schultz AC, Nygaard P, Saxild HH: Functional analysis of 14 genes that consitute the purine catabolic pathway in bacillus subtilis and evidence for a novel regulon controlled by the PucR transcription activator. J Bacteriol 2001, 183:3293-3302.
  • [37]Vogels GD, Van der Drift C: Degradation of purines and pyrimidines by microorganisms. Bacteriol Rev 1976, 40:403-468.
  • [38]Yoo HS, Genbauffe FS, Cooper TG: Identification of the ureidoglycolate hydrolase gene in the DAL gene cluster of Saccharomyces cerevisiae. Mol Cell Biol 1985, 5:2279-2288.
  • [39]Serventi F, Ramazzina I, Lamberto I, Puggioni V, Gatti R, Percudani R: Chemical basis of nitrogen recovery through the ureide pathway: formation and hydrolysis of S-ureidoglycine in plants and bacteria. ACS Chem Biol 2010, 5:203-214.
  • [40]Backman TWH, Cao Y, Girke T: ChemMine tools: an online service for analyzing and clustering small molecules. Nucleic Acids Res 2011, 39:W486-W491. http://chemmine.ucr.edu/ webcite
  • [41]Legrain C, Villeret V, Roovers M, Gigot D, Dideberg O, Pierard A, Glansdorff N: Biochemical characterization of ornithine carbamoyltransferase from pyrococcus furiosus. Eur J Biochem 1997, 247:1046-1055.
  • [42]Dutoit R, De Ruyck J, Durisotti V, Legrain C, Jacobs E, Wouters J: Overexpression, physicochemical characterization, and modeling of a hyperthermophilic pyrococcus furiosus type 2 IPP isomerase. Proteins 2008, 71:1699-1707.
  • [43]Legrain C, Demarez M, Glansdorff N, Piérard A: Ammonia-dependent synthesis and metabolic channelling of carbamoyl phosphate in the hyperthermophilic archaeon pyrococcus furiosus. Microbiology 1995, 141:1093-1099.
  • [44]Legrain C, Stalon V: Ornithine carbamoyltransferase from Escherichia coli W. Purification, structure and steady-state kinetic analysis. Eur J Biochem 1976, 63:289-301.
  • [45]Ferreira AC, Nobre MF, Moore E, Rainey FA, Battista JR, da Costa MS: Characterization and radiation resistance of new isolates of rubrobacter radiotolerans and rubrobacter xylanophilus. Extremophiles 1999, 3:235-238.
  • [46]Furnham N, Garavelli JS, Apweiler R, Thornton JM: Missing in action: enzyme functional annotations in biological databases. Nat Chem Biol 2009, 5:521-525.
  • [47]Schnoes AM, Brown SD, Dodevski I, Babbitt PC: Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol 2009, 5:e1000605.
  • [48]French JB, Ealick SE: Biochemical and structural characterization of a ureidoglycine aminotransferase in the Klebsiella pneumoniae uric acid catabolic pathway. Biochemistry 2010, 49:5975-5977.
  • [49]Ramazzina I, Costa R, Cendron L, Berni R, Peracchi A, Zanotti G, Percudani R: An aminotransferase branch point connects purine catabolism to amino acid recycling. Nat Chem Biol 2010, 6:801-806.
  • [50]Gravenmade EJ, Vogels GD, der Drift CV: Hydrolysis, racemization and absolute configuration of ureidoglycolate, a substrate of allantoicase. Biochim Biophys Acta 1970, 198:569-582.
  • [51]Berman HM, Henrick K, Kleywegt G, Nakamura H, Markley J: The worldwide protein data bank. International Tables for Crystallography 2012, Vol F ch.24.1:827-832.
  • [52]Armougom F, Moretti S, Poirot O, Audic S, Dumas P, Schaeli B, Keduas V, Notredame C: Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res 2006, 34:W604-W608.
  • [53]Dalton JAR, Jackson RM: An evaluation of automated homology modelling methods at low target template sequence similarity. Bioinformatics 2007, 23:1901-1908.
  • [54]Eddy SR: Profile hidden Markov models. Bioinformatics 1998, 14:755-763.
  • [55]Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22:1658-1659. http://weizhong-lab.ucsd.edu/cd-hit/ webcite
  • [56]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797. http://www.drive5.com/muscle/ webcite
  • [57]Söding J: Protein homology detection by HMM-HMM comparison. Bioinformatics 2005, 21:951-960.
  • [58]Price MN, Dehal PS, Arkin AP: FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010, 5:e9490. https://wiki.gacrc.uga.edu/wiki/Fasttree webcite
  • [59]Anisimova M, Gascuel O: Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 2006, 55:539-552. http://www.atgc-montpellier.fr/phyml/paper.php webcite
  • [60]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739. http://www.megasoftware.net/ webcite
  • [61]Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R: Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 2007, 8:460. http://ab.inf.uni-tuebingen.de/software/dendroscope/ webcite BioMed Central Full Text
  • [62]Magarvey NA, Keller JM, Bernan V, Dworkin M, Sherman DH: Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Appl Environ Microbiol 2004, 70:7520-7529.
  • [63]Casadaban MJ, Cohen SN: Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 1980, 138:179-207.
  • [64]Hill DW, Walters FH, Wilson TD, Stuart JD: High performance liquid chromatographic determination of amino acids in the picomole range. Anal Chem 1979, 51:1338-1341.
  • [65]Jones BN, Pääbo S, Stein S: Amino acid analysis and enzymatic sequence determination of peptides by an improved o-phthaldialdehyde precolumn labeling procedure. J Liq Chromatogr 1981, 4:565-586.
  文献评价指标  
  下载次数:113次 浏览次数:17次