期刊论文详细信息
BMC Research Notes
Cross-species testing and utility of microsatellite loci in Indirana frogs
Juha Merilä1  K Santhosh Kumar2  Sanil George2  Sujith V Gopalan2  Abhilash Nair1 
[1] Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, PO Box 65, Helsinki, FI-00014, Finland;Chemical Biology, Rajiv Gandhi Centre for Biotechnology, PO Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695 014, India
关键词: Western Ghats;    Ranixalidae;    Biodiversity hotspot;    Indirana;    Microsatellite;    Amphibia;   
Others  :  1166056
DOI  :  10.1186/1756-0500-5-389
 received in 2012-05-16, accepted in 2012-07-13,  发布年份 2012
PDF
【 摘 要 】

Background

Microsatellite loci are widely used in population and conservation genetic studies of amphibians, but the availability of such markers for tropical and subtropical taxa is currently very limited. In order to develop resources for conservation genetic studies in the genus Indirana, we tested amplification success and polymorphism in 62 previously developed microsatellite loci, in eight Indirana species - including new candidate species. Developing genomic resources for this amphibian taxon is particularly important as it is endemic to the Western Ghats biodiversity hotspot, and harbours several endangered species.

Findings

The cross-species amplification success rate varied from 11.3 % to 29.0 % depending on the species, with 29 - 80 % of the amplifying loci being polymorphic. A strong negative correlation between cross-species amplification success (and polymorphism) and genetic distance separating target from source species was observed.

Conclusions

Our results provide additional genetic support for the existence of genetically divergent cryptic species within the genus Indirana. The tested markers should be useful for population and conservation genetic studies in this genus, and in particular, for species closely related to the source species, I. beddomii.

【 授权许可】

   
2012 Nair et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150416040240207.pdf 351KB PDF download
Figure 1. 64KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J: Biodiversity hotspots for conservation priorities. Nature 2000, 403:853-858.
  • [2]Biju SD, Bossuyt F: New frog family from India reveals an ancient biogeographical link with the Seychelles. Nature 2003, 425:711-714.
  • [3]Daniels RJR: Amphibians of Peninsular India. Universities Press (India) Private Ltd, Hyderabad; 2005.
  • [4]Dinesh KP, Radhakrishnan C, Gururaja KV, Bhatt G: An annotated checklist of Amphibia of India with some insights into the patterns of species discoveries, distribution and endemism. Rec Zool Surv India 2009, 302:1-133.
  • [5]Inger RF: Distribution of amphibians in southern Asia and adjacent islands. In Patterns of Distribution of Amphibians: A global perspective. Edited by Duellman WE. The Johns Hopkins University Press, London; 1999:445-482.
  • [6]Daniels RJR: Taxonomic uncertainties and conservation assessment of the Western Ghats. Curr Sci 1997, 73:169-170.
  • [7]Biju SD: A synopsis to the frog fauna of the Western Ghats. India. Occas Publ Indian Soc Conserv Biol 2001, 1:1-24.
  • [8]Bocxlaer IV, Roelants K, Biju SD, Nagaraju J, Bossuyt F: Late Cretaceous vicariance in Gondwanan amphibians. PLoS One 2006, 1:e74.
  • [9]Nair A, Gopalan SV, George S, Kumar KS, Teacher AGF, Merilä J: Endemic Indirana frogs of the Western Ghats biodiversity hotspot. Ann Zool Fenn, in press;
  • [10]Nair A, Gopalan SV, George S, Kumar KS, Teacher AGF, Merilä J: High cryptic diversity of endemic Indirana frogs in the Western Ghats biodiversity hotspot. Anim Conserv
  • [11]Nair A, Kumar KS, George S, Gopalan SV, Li M-H, Leder E, Merilä J: Sixty two new microsatellite markers for an endemic frog Indirana beddomii from the Western Ghats biodiversity hotspot. Conserv Genet Resour 2011, 3:167-171.
  • [12]Brownstein MJ, Carpten JD, Smith JR: Modulation of non-templated nucleotide addition by TaqDNA polymerase: primer modification that facilitate genotyping. BioTechiques 1996, 20:1004-1010.
  • [13]Primmer CR, Painter JN, Koskinen MT, Palo JU, Merilä J: Factors affecting avian cross-species microsatellite amplification. J Avian Biol 2005, 36:348-360.
  • [14]Liu Z, Crooijmans RPMA, van der Poel JJ, Groenen MAM: Use of chicken microsatellite markers in turkey: A pessimistic view. Anim Genet 1996, 27:191-193.
  • [15]Kimura MA: A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980, 16:111-120.
  • [16]Tamura K, Peterson D, Peterson N, Steker G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 2011, 28:2731-2739.
  • [17]Moore SS, Sargeant LL, King TJ, Mattick JS, Georges M, Hetzel DJS: The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics 1991, 10:654-660.
  • [18]Carreras-Carbonell J, Macpherson E, Pascual M: Utility of pairwise mtDNA genetic distances for predicting cross-species microsatellite amplification and polymorphism success in fishes. Conserv Genet 2008, 9:181-190.
  • [19]Hendrix R, Hauswaldt S, Veith M, Steinfartz S: Strong correlation between cross-amplification success and genetic distance across all members of “True Salamanders” (Amphibia: Salamandridae) revealed by Salamandra salamandra-specific microsatellite loci. Mol Ecol Resour 2010, 10:1038-1047.
  • [20]Primmer CR, Merilä J: A low rate of cross-species microsatellite amplification success in ranid frogs. Conserv Genet 2002, 3:445-449.
  • [21]Balloux F, Ecoffey E, Fumagalli L, Goudet J, Wyttenbach A, Hausser F: Microsatellite conservation, polymorphism, and GC content in shrews of the genus Sorex (Insectivora, Mammalia). Mol Biol Evol 1998, 15:473-475.
  • [22]Garner TWJ, Schmidt BR, Hoeck P, Van Buskirk J: Di- and tetranucleotide microsatellite markers for the Alpine newt (Triturus alpestris): characterization and cross-priming in five congeners. Mol Ecol Notes 2003, 3:186-188.
  • [23]Barbará T, Palma-Silva C, Paggi GM, Bered F, Fay MF, Lexer C: Cross-species transfer of nuclear microsatellite markers: potential and limitations. Mol Ecol 2007, 16:3759-3767.
  • [24]Farrelly V, Rainey FA, Stackebrandt E: Effect of genome size and rrn gene copy number on PCR amplification of 16 S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 1995, 61:2798-2801.
  • [25]Garner TWJ: Genome size and microsatellites: the effect of nuclear size on amplification potential. Genome 2002, 45:212-215.
  • [26]Moore SS, Hale P, Bryne K: NCAM: a polymorphic microsatellite locus conserved across eutherian mammal species. Anim Genet 1998, 29:33-36.
  • [27]Shikano T, Ramadevi J, Shimada Y, Merilä J: Utility of sequenced genomes for microsatellite marker development in non-model organisms: a case study of functionally important genes in nine-spined sticklebacks (Pungitius pungitius). BMC Genomics 2010, 11:334. BioMed Central Full Text
  文献评价指标  
  下载次数:7次 浏览次数:22次