期刊论文详细信息
BMC Genomics
Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait. drought response: integration of genome annotation, allele association and QTL detection for candidate gene identification
María-Teresa Cervera3  Ismael Aranda2  Carmen Díaz-Sala1  Carmen Collada4  María-Carmen Barbero3  Jose-Antonio Mancha2  Luis-Manuel Díaz3  Enrique Sáez-Laguna3  María-Dolores Vélez3  María-Ángeles Guevara3  David Sánchez-Gómez2  Nuria de María3  José-Antonio Cabezas3  Marina de Miguel3 
[1]Departamento de Ciencias de la Vida, Universidad de Alcalá, Ctra. de Barcelona Km 33.6, 28871 Alcalá de Henares, Madrid, Spain
[2]Departamento de Ecología y Genética Forestal, INIA-CIFOR. Ctra, de La Coruña Km 7.5, 28040 Madrid, Spain
[3]Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
[4]ETSIM, Departamento de Biotecnología, Ciudad Universitaria, s/n, 28040 Madrid, Spain
关键词: Water use efficiency;    QTL;    Pinus pinaster;    Photosynthesis;    Photochemistry;    Genome annotation;    Drought;    Candidate gene;   
Others  :  1216597
DOI  :  10.1186/1471-2164-15-464
 received in 2013-10-03, accepted in 2014-06-05,  发布年份 2014
PDF
【 摘 要 】

Background

Understanding molecular mechanisms that control photosynthesis and water use efficiency in response to drought is crucial for plant species from dry areas. This study aimed to identify QTL for these traits in a Mediterranean conifer and tested their stability under drought.

Results

High density linkage maps for Pinus pinaster were used in the detection of QTL for photosynthesis and water use efficiency at three water irrigation regimes. A total of 28 significant and 27 suggestive QTL were found. QTL detected for photochemical traits accounted for the higher percentage of phenotypic variance. Functional annotation of genes within the QTL suggested 58 candidate genes for the analyzed traits. Allele association analysis in selected candidate genes showed three SNPs located in a MYB transcription factor that were significantly associated with efficiency of energy capture by open PSII reaction centers and specific leaf area.

Conclusions

The integration of QTL mapping of functional traits, genome annotation and allele association yielded several candidate genes involved with molecular control of photosynthesis and water use efficiency in response to drought in a conifer species. The results obtained highlight the importance of maintaining the integrity of the photochemical machinery in P. pinaster drought response.

【 授权许可】

   
2014 de Miguel et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150701130623859.pdf 1773KB PDF download
Figure 3. 131KB Image download
Figure 2. 94KB Image download
Figure 1. 101KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Chaves M, Davies B: Drought effects and water use efficiency: improving crop production in dry environments. Funct Plant Biol 2010, 37:3-5.
  • [2]Pinheiro C, Chaves MM: Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 2011, 62:869-882.
  • [3]Jones H: Partitioning stomatal and non stomatal limitations to photosynthesis. Plant Cell Environ 1985, 8:95-104.
  • [4]Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J: Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 2012, 63:1637-1661.
  • [5]Cano FJ, Sánchez-Gómez D, Rodríguez-Calcerrada J, Warren CR, Gil L, Aranda I: Effects of drought on mesophyll conductance and photosynthetic limitations at different tree canopy layers. Plant Cell Environ 2013, 36:1961-1980. doi:10.1111/pce.12103
  • [6]Flexas J, Medrano H: Drought inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Botany 2002, 89:183-189.
  • [7]Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Diaz-Espejo A, Douthe C, Dreyer E, Jp JP, Gago J: Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis. Plant Sci 2012, 193–194:70-84.
  • [8]González-Martínez SC, Krutovsky KV, Neale DB: Forest-tree population genomics and adaptive evolution. New Phytol 2006, 170:227-238.
  • [9]Neale DB, Kremer A: Forest tree genomics: growing resources and applications. Nat Rev Genet 2011, 12:111-122.
  • [10]Neale D, Savolainen O: Association genetics of complex traits in conifers. Trends Plant Sci 2004, 9:325-330.
  • [11]Thavamanikumar S, Southerton SG, Bossinger G, Thumma BR: Dissection of complex traits in forest trees: opportunities for marker-assisted selection. TGG 2013, 9:627-639.
  • [12]Mochida K, Shinozaki K: Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 2010, 51:497-523.
  • [13]Deschamps S, Campbell MA: Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery. Mol Breed 2010, 25:553-570.
  • [14]Rigault P, Boyle B, Lepage P, Cooke JEK, Bousquet J, MacKay JJ: A white spruce gene catalog for conifer genome analyses. Plant Physiol 2011, 157:14-28.
  • [15]Zhou Y, Gao F, Liu R, Feng J, Li H: De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus. BMC Genomics 2012, 13:266.
  • [16]Qiu Q, Ma T, Hu Q, Liu B, Wu Y, Zhou H, Wang Q, Wang J, Liu J: Genome-scale transcriptome analysis of the desert poplar. Populus euphratica. Tree Physiol 2011, 31:452-461.
  • [17]Li X, Wu HX, Dillon SK, Southerton SG: Generation and analysis of expressed sequence tags from six developing xylem libraries in Pinus radiata D Don. BMC Genomics 2009, 10:41.
  • [18]Perdiguero P, Collada C, Barbero MC, Casado GG, Cervera MT, Soto A: Identification of water stress genes in Pinus pinaster Ait. by controlled progressive stress and suppression-subtractive hybridization. Plant Physiol Bioch 2012, 50:44-53.
  • [19]Monclus R, Leplé JC, Bastien C, Bert PF, Villar M, Marron N, Brignolas F, Jorge V, Orléans F, Champenoux F: Integrating genome annotation and QTL position to identify candidate genes for productivity, architecture and water-use efficiency in Populus spp. BMC Plant Biol 2012, 12:173.
  • [20]Chancerel E, Lamy J-B, Lesur I, Noirot C, Klopp C, Ehrenmann F, Boury C, Le Provost G, Label P, Lalanne C: High-density linkage mapping in a pine tree reveals a genomic region associated with inbreeding depression and provides clues to the extent and distribution of meiotic recombination. BMC Biol 2013, 11:50.
  • [21]Echt C, Saha S, Krutovsky K, Wimalanathan K, Erpelding J, Liang C: An annotated genetic map of loblolly pine based on microsatellite and cDNA markers. BMC Genet 2011, 12:17.
  • [22]Eckert AJ, Pande B, Ersoz ES, Wright MH, Rashbrook VK, Nicolet CM, Neale DB: High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.). TGG 2009, 5:225-234. 61
  • [23]Eckert AJ, van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, Gonzalez-Martinez SC, Neale D: Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 2010, 185:969-982.
  • [24]Martínez-García PJ, Stevens KA, Wegrzyn JL, Liechty J, Crepeau M, Langley CH, Neale DB: Combination of multipoint maximum likelihood (MML) and regression mapping algorithms to construct a high-density genetic linkage map for loblolly pine (Pinus taeda L.). TGG 2013, 9:1529-1535.
  • [25]Moriguchi Y, Ujino-Ihara T, Futamura N, Saito M, Ueno S, Matsumoto A, Tani N, Taira H, Shinohara K, Tsumura Y: The construction of a high-density linkage map for identifying SNP markers that are tighly linked to a nuclear-recessive major gene for male sterility in Cryptomeria japonica D.Don. BMC Genomics 2012, 19:95.
  • [26]Pavy N, Pelgas B, Beauseigle S, Blais S, Gagnon F, Gosselin I, Lamothe M, Isabel N, Bousquet J: Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce. BMC Genomics 2008, 9:21.
  • [27]Pavy N, Pelgas B, Laroche J, Rigault P, Isabel N, Bousquet J: A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. BMC Biol 2012, 10:84.
  • [28]Sehgal D, Rajaram V, Armstead IP, Vadez V, Yadav YP, Hash CT, Yadav RS: Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biol 2012, 12:9.
  • [29]Prunier J, Pelgas B, Gagnon F, Desponts M, Isabel N, Beaulieu J, Bousquet J: The genomic architecture and association genetics of adaptive characters using a candidate SNP approach in boreal black spruce. BMC Genomics 2013, 14:368.
  • [30]Pflieger S, Lefebvre V, Causse M: The candidate gene approach in plant genetics: a review. Mol Breed 2001, 7:275-291.
  • [31]Casasoli M, Pot D, Plomion C, Monteverdi MC, Barreneche T, Lauteri M, Villani F: Identification of QTLs affecting adaptive traits in Castanea sativa Mill Plant. Cell Environ 2004, 27:1088-1101.
  • [32]Hurme P, Sillanpaa MJ, Arjas E, Repo T, Savolainen O: Genetic basis of climatic adaptation in scots pine by bayesian quantitative trait locus analysis. Genetics 2000, 156:1309-1322.
  • [33]Lebreton C, Lazić-Jančić V, Steed A, Pekić S, Quarrie S: Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 1995, 46:853-865.
  • [34]Whan A, Robinson N, Lakshmanan P, Schmidt S, Aitken K: A quantitative genetics approach to nitrogen use efficiency in sugarcane. Funct Plant Biol 2010, 37:448-454.
  • [35]Price A, Courtois B: Mapping QTLs associated with drought resistance in rice: Progress, problems and prospects. Plant Growth Regul 1999, 29:123-133.
  • [36]Thumma BR, Naidu BP, Chandra A, Cameron DF, Bahnisch LM, Liu C: Identification of causal relationships among traits related to drought resistance in Stylosanthes scabra using QTL analysis. J Exp Bot 2001, 52:203.
  • [37]Juenger TE, Mckay JK, Hausmann N, Keurentjes JJB, Sen S, Stowe KA, Dawson TE, Simms EL, Richards JH: Identification and characterization of QTL underlying whole plant physiology in Arabidopsis thaliana: δ13C, stomatal conductance and transpiration efficiency. Plant Cell Environ 2005, 28:697-708.
  • [38]Specht J, Chase K, Macrander M, Graef G, Chung J, Markwell J, Germann M, Orf J, Lark K: Soybean response to water: A QTL analysis of drought tolerance. Crop Sci 2001, 41:493-509.
  • [39]Agbicodo E, Fatokun C, Muranaka S, Visser R: Breeding drought tolerant cowpea: constraints, accomplishments, and future prospects. Euphytica 2009, 167:353-370.
  • [40]Yin Z, Meng F, Song H, He X, Xu X, Yu D: Mapping quantitative trait loci associated with chlorophyll a fluorescence parameters in soybean (Glycine max (L.) Merr.). Planta 2010, 231:875-885.
  • [41]Gu J, Yin X, Struik PC, Stomph TJ, Wang H: Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well-watered field conditions. J Exp Bot 2012, 63:455-469.
  • [42]Fischer R, Edmeades GO: Breeding and cereal yield progress. Crop Sci 2010, 50:85-98.
  • [43]Brendel O, Le Thiece D, Scotti-Saintagne C, Bodénès C, Kremer A, Guehl J-M: Quantitative trait loci controlling water use efficiency and related traits in Quercus robur L. TGG 2008, 4:263-278.
  • [44]Brendel O, Pot D, Plomion C, Rozenberg P, Guehl JM: Genetic parameters and QTL analysis of δ13C and ring width in maritime pine. Plant Cell Environ 2002, 25:945-953.
  • [45]Muchero W, Sewell MM, Ranjan P, Gunter LE, Tschaplinski TJ, Yin T, Tuskan GA: Genome anchored QTLs for biomass productivity in hybrid Populus grown under contrasting environments. PLoS One 2013, 8:e54468.
  • [46]Freeman JS, Potts BM, Downes GM, Pilbeam D, Thavamanikumar S, Vaillancourt R: Stability of quantitative trait loci for growth and wood properties across multiple pedigrees and environments in Eucalyptus globulus. New Phytol 2013, 198:1121-1134.
  • [47]Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln S, Tanksley S: Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment lenght polymorphisms. Nature 1988, 335:721-726.
  • [48]Kruglyak L, Lander ES: High-resolution genetic mapping of complex traits. Am J Hum Genet 1995, 56:1212.
  • [49]Paran I, Zamir D: Quantitative traits in plants: beyond the QTL. Trends Genet 2003, 19:303-306.
  • [50]Yin X, Kropff MJ, Stam P: The role of ecophysiological models in QTL analysis: the example of specific leaf area in barley. Heredity 1999, 82:415-421.
  • [51]Pelgas B, Bousquet J, Meirmans P, Ritland K, Isabel N: QTL mapping in white spruce: gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments. BMC Genomics 2011, 12:145.
  • [52]Granda E, Camarero JJ, Gimeno TE, Martínez-Fernández J, Valladares F: Intensity and timing of warming and drought differentially affect growth patterns of co-occurring Mediterranean tree species. Eur J Forest Res 2013, 132:469-480.
  • [53]Körner C, Sarris D, Christodoulakis D: Long-term increase in climatic dryness in the East-Mediterranean as evidenced for the island of Samos. Regional Environ Change 2005, 5:27-36.
  • [54]Sarris D, Christodoulakis D, KÖRNER C: Recent decline in precipitation and tree growth in the eastern Mediterranean. Glob Chang Biol 2007, 13:1187-1200.
  • [55]Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held R, Jones R, Kolli RK, Kwon W, Laprise R: Regional climate projections. Contribution of Working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change, 2007: The Physical Science Basis. Edited by Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HLR, Chen Z. Cambridge, UK and New York, USA: Cambridge University Press; 2007:847-940.
  • [56]Blanco E, Casado MA, Costa M, Escribano R, García-Anton M, Génova M, Gómez-Manzaneque A, Gómez-Manzaneque F, Moreno JC, Morla C, Regato P, Sainz H: Los bosques ibéricos. Una interpretación geobotánica. 4th edition. Barcelona: Planeta; 2005.
  • [57]Tadesse W, Nanos N, Aunon F, Arrabal C, Garcia C, Gil L, Alia R, Pardos J: Genetic improvement of resin yield from maritime pine in Spain. Forest Chem Rev 2001, 111:11.
  • [58]INF3: Inventario Nacional Forestal. Edited by http://www.magrama.gob.es/es/biodiversidad/temas/inventarios-nacionales/inventario-forestal-nacional/; webcite 2007
  • [59]Grivet D, Sebastiani F, Alía R, Bataillon T, Torre S, Zabal-Aguirre M, Vendramin GG, González-Martínez SC: Molecular footprints of local adaptation in two Mediterranean conifers. Mol Biol Evol 2011, 28:101.
  • [60]Eveno E, Collada C, Guevara MA, Léger V, Soto A, Díaz L, Léger P, González-Martínez SC, Cervera MT, Plomion C, Garnier-Géré P: Contrasting patterns of selection at Pinus pinaster Ait. drought stress candidate genes as revealed by genetic differentiation analyses. Mol Biol Evol 2008, 25:417-437.
  • [61]Martínez-Vilalata J, Piñol J: Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For Ecol Manag 2002, 161:247-256.
  • [62]Sabaté S, Gracia CA, Sánchez A: Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. For Ecol Manag 2002, 162:23-37.
  • [63]González-Martínez SC, Huber D, Ersoz E, Davis J, Neale D: Association genetics in Pinus taeda L. II Carbon isotope discrimination. Heredity 2008, 101:19-26.
  • [64]González-Martínez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB: DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 2006, 172:1915.
  • [65]Street NR, Skogstrom O, Sjodin A, Tucker J, Rodriguez-Acosta M, Nilsson P, Jansson S, Taylor G: The genetics and genomics of the drought response in Populus. Plant J 2006, 48:321-341.
  • [66]Tschaplinski TJ, Tuskan GA, Sewell MM, Gebre GM, Todd DE, Pendley CD: Phenotypic variation and quantitative trait locus identification for osmotic potential in an interspecific hybrid inbred F2 poplar pedigree grown in contrasting environments. Tree Physiol 2006, 26:595-604.
  • [67]Parelle J, Zapater M, Scotti-Saintagne C, Kremer A, Jolivet Y, Dreyer E, Brendel O: Quantitative trait loci of tolerance to waterlogging in a European oak (Quercus robur L.): physiological relevance and temporal effect patterns. Plant Cell Environ 2007, 30:422-434.
  • [68]Gerber S, Lascoux M, Kremer A: Relation between protein markers and quantitative traits in maritime pine (Pinus pinaster Ait.). Silvae Genet 1997, 46:286-291.
  • [69]Markussen T, Fladung M, Achere V, Favre JM, Faivre-Rampant P, Aragones A, DA Silva Pérez D, Havengt L, Ritter E: Identification of QTLs controlling growth, chemical and physical wood property traits in Pinus pinaster, Ait. Silvae Genet 2003, 52:8-15.
  • [70]Pot D, Rodrigues J, Rozenberg P, Chantre G, Tibbits J, Cahalan C, Pichavant F, Plomion C: QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.). TGG 2006, 2:10-24.
  • [71]Plomion C, Durel CE, O'Malley DM: Genetic dissection of height in maritime pine seedlings raised under accelerated growth conditions. Theor Appl Genet 1996, 93:849-858.
  • [72]Chagné D, Brown GR, Lalanne C, Madur D, Pot D, Neale D, Plomion C: Comparative genome and QTL mapping between maritime and loblolly pines. Mol Breed 2003, 12:185-195.
  • [73]Lepoittevin C, Harvengt L, Plomion C, Garnier-Géré P: Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population. TGG 2012, 8:113-126.
  • [74]Plomion C, Yani A, Marpeau A: Genetic determinism of delta 3-carene in maritime pine using RAPD markers. Genome 1996, 39:1123-1127.
  • [75]Budde KB, Heuertz M, Hernández-Serrano A, Pausas JG, Vendramin GG, Verdú M, González-Martínez SC: In situ genetic association for serotiny, a fire-related trait, in Mediterranean maritime pine (Pinus pinaster). New Phytol 2014, 201:230-241. doi:10.1111/nph.12483
  • [76]de Miguel M, Sánchez-Gómez D, Cervera MT, Aranda I: Functional and genetic characterization of gas exchange and intrinsic water use efficiency in a full-sib family of Pinus pinaster Ait. in response to drought. Tree Physiol 2012, 32:94-103.
  • [77]Sharp Z: Principles of stable isotope geochemistry. Upper Saddle River: NJ Pearson Education Inc.; 2007.
  • [78]Dellaporta SL, Wood J, Hicks JB: A plant DNA minipreparation: version II. Plant Mol Biol Report 1983, 1:19-21.
  • [79]Guevara MA, Chagné D, Almeida H, Byrnes M, Collada C, Favre JM, Harvengt L, Jeandroz S, Orazio C, Plomion C, Ramboer A, Rocheta M, Sebastiani F, Soto A, Vendramin GG, Cervera MT: Isolation and characterization of nuclear microsatellite loci in Pinus pinaster Ait. Mol Ecol Notes 2005, 5:57-59.
  • [80]Chagné D: Développement de marqueurs moléculaires chez le pin maritime (Pinus pinaster Ait.) et cartographie génétique comparée des conifères. PhD. Nancy I: Nancy, France; 2004.
  • [81]de Miguel M, de María N, Guevara MA, Díaz L, Sáez-Laguna E, Sánchez-Gómez D, Chancerel E, Aranda I, Collada C, Plomion C, Cabezas JA, Cervera MT: Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers. BMC Genomics 2012, 13:527.
  • [82]Chancerel E, Lepoittevin C, Le Provost G, Lin Y-C, Jaramillo-Correa J, Eckert A, Wegrzyn J, Zelenika D, Boland A, Frigerio J-M, Chaumeil P, Garnier-Gere P, Boury C, Grivet D, Gonzalez-Martinez S, Rouze P, Van de Peer Y, Neale D, Cervera M, Kremer A, Plomion C: Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine. BMC Genomics 2011, 12:368.
  • [83]Grattapaglia D, Sederoff R: Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 1994, 137:1121-1137.
  • [84]Van Ooijen JW: Joinmap 4, software for the calculation of genetic maps in experimental populations. Edited by Kiazma BV. Wageningen; 2006.
  • [85]Kosambi D: The estimation of map distances from recombination values. Annals Eugen 1944, 12:172-175.
  • [86]Hulbert S, Ilott T, Legg E, Lincoln S, Lander E, Michelmore R: Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics 1988, 120:947.
  • [87]Chakravarti A, Lasher LK, Reefer JE: A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 1991, 128:175-182.
  • [88]Van Ooijen JW: MapQTL 6.0, software for the mapping of quantitative trait loci in experimental populations of diploid species. Edited by Kiazma BV. Wageningen; 2009.
  • [89]Conesa A, Götz S, García-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21:3674-3676.
  • [90]Kuramoto N, Kondo T, Fujisawa Y, Nakata R, Hayashi E, Goto Y: Detection of quantitative trait loci for wood strength in Cryptomeria japonica. Can J Forest Res-Revue Canadienne De Recherche Forestiere 2000, 30:1525-1533.
  • [91]Nikaido A, Ujino T, Iwata H, Yoshimura K, Yoshimura H, Suyama Y, Murai M, Nagasaka K, Tsumura Y: AFLP and CAPS linkage maps of Cryptomeria japonica. Theor Appl Genet 2000, 100:825-831.
  • [92]Scotti I, Burelli A, Cattonaro F, Chagné D, Fuller J, Hedley PE, Jansson G, Lalanne C, Madur D, Neale D, Plomion C, Powell W, Troggio M, Morgante M: Analysis of the distribution of marker classes in a genetic linkage map: a case study in Norway spruce (Picea abies Karst). TGG 2005, 1:93-102.
  • [93]Komulainen P, Brown GR, Mikkonen M, Karhu A, Garcia-Gil MR, O'Malley D, Lee B, Neale DB, Savolainen O: Comparing EST-based genetic maps between Pinus sylvestris and Pinus taeda. Theor Appl Genet 2003, 107:667-678.
  • [94]Sewell MM, Sherman BK, Neale DB: A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 1999, 151:321-330.
  • [95]Plomion C, O'Malley D: Recombination rate differences for pollen parents and seed parents in pine. Heredity 1996, 77:341-350.
  • [96]Mackay J, Dean JFD, Plomion C, Peterson DG, Cánovas FM, Pavy N, Ingvarsson PK, Savolainen O, Guevara MÁ, Fluch S, Vinceti B, Abarca D, Díaz-Sala C, Cervera M-T: Towards decoding the conifer giga-genome. Plant Mol Biol 2012, 80:555-569.
  • [97]Arrillaga I, Guevara M, Muñoz-Bertomeu J, Lázaro-Gimeno D, Sáez-Laguna E, Díaz L, Torralba L, Mendoza-Poudereux I, Segura J, Cervera M: Selection of haploid cell lines from megagametophyte cultures of maritime pine as a DNA source for massive sequencing of the species. Plant Cell Tiss Org Cult 2014. doi:10.1007/s11240-014-0470-z
  • [98]Bucci G, González-Martínez SC, Le Provost G, Plomion C, Ribeiro MM, Sebastiani F, Alía R, Vendramin GG: Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers. Molec Ecol 2007, 16:2137-2153.
  • [99]Hackett CA, Broadfoot LB: Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 2003, 90:33-38.
  • [100]Ukrainetz N, Ritland K, Mansfield S: Identification of quantitative trait loci for wood quality and growth across eight full-sib coastal Douglas-fir families. TGG 2008, 4:159-170.
  • [101]Novaes E, Osorio L, Drost DR, Miles BL, Boaventura-Novaes CRD, Benedict C, Dervinis C, Yu Q, Sykes R, Davis M, Martin TA, Peter GF, Kirst M: Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytol 2009, 182:878-890.
  • [102]Bartholomé J, Salmon F, Vigneron P, Bouvet J-M, Plomion C, Gion J-M: Plasticity of primary and secondary growth dynamics in Eucalyptus hybrids: a quantitative genetics and QTL mapping perspective. BMC Plant Biol 2013, 13:120.
  • [103]Fracheboud Y, Jompuk C, Ribaut J, Stamp P, Leipner J: Genetic analysis of cold-tolerance of photosynthesis in maize. Plant Mol Biol 2004, 56:241-253.
  • [104]Guo P, Baum M, Varshney RK, Graner A, Grando S, Ceccarelli S: QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica 2008, 163:203-214.
  • [105]Kearsey M, Farquhar A: QTL analysis in plants; where are we now? Heredity 1998, 80:137-142.
  • [106]Fracheboud Y, Ribaut JM, Vargas M, Messmer R, Stamp P: Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 2002, 53:1967-1977.
  • [107]Aranda I, Alía R, Ortega U, Dantas AK, Majada J: Intra-specific variability in biomass partitioning and carbon isotopic discrimination under moderate drought stress in seedlings from four Pinus pinaster populations. TGG 2010, 6:169-178.
  • [108]Correia I, Almeida MH, Aguiar A, Alía R, David TS, Pereira JS: Variations in growth, survival and carbon isotope composition (δ13C) among Pinus pinaster populations of different geographic origins. Tree Physiol 2008, 28:1545-1552.
  • [109]Corcuera L, Gil-Pelegrin E, Notivol E: Phenotypic plasticity in Pinus pinaster delta C13: environment modulates genetic variation. Ann For Sci 2010, 67:812.
  • [110]Watkinson JI, Sioson AA, Vasquez-Robinet C, Shukla M, Kumar D, Ellis M, Heath LS, Ramakrishnan N, Chevone B, Watson LT: Photosynthetic acclimation is reflected in specific patterns of gene expression in drought-stressed loblolly pine. Plant Physiol 2003, 133:1702-1716.
  • [111]Fernández M, Gil L, Pardos JA: Effects of water supply on gas exchange in Pinus pinaster Ait. provenances during their first growing season. Ann For Sci 2000, 57:9-16.
  • [112]Fernandez M, Novillo C, Pardos JA: Effects of water and nutrient availability in Pinus pinaster Ait. Open pollinated families at an early age: Growth, gas exchange and water relations. New For 2006, 31:321-342.
  • [113]Guehl J, Fort C, Ferhi A: Differential response of leaf conductance, carbon isotope discrimination and water-use efficiency to nitrogen deficiency in maritime pine and pedunculate oak plants. New Phytol 1995, 131:149-157.
  • [114]Price AH: Believe it or not, QTLs are accurate! Trends Plant Sci 2006, 11:213-216.
  • [115]Saibo NJM, Lourenço T, Oliveira MM: Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Botany 2009, 103:609-623.
  • [116]Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf K-D: Complexity of the heat stress response in plants. Curr Opin Plant Biol 2007, 10:310-316.
  • [117]Lepoittevin C, Garnier-Gere P, Hubert F, Plomion C: Strong linkage disequilibrium and balanced selection in Pinus pinaster transcription factors putatively involved in wood formation. In Oral presentation to IUFRO-CTIA Joint Conference “Adaptation, Breeding and Conservation in the Era of Forest Tree Genomics and Environmental Change”. IUFRO-CTIA: Québec City (Canada); 2008:26-28.
  • [118]Bomal C, Duval I, Giguère I, Fortin E, Caron S, Stewart D, Boyle B, Séguin A, MacKay JJ: Opposite action of R2R3-MYBs from different subgroups on key genes of the shikimate and monolignol pathways in spruce. J Exp Bot 2014, 65:495-508.
  • [119]Craven-Bartle B, Pascual MB, Cánovas FM, Ávila C: A Myb transcription factor regulates genes of the phenylalanine pathway in maritime pine. Plant J 2013, 74:755-766.
  • [120]Peñuelas J, Munné-Bosc S: Isoprenoids: an evolutionary pool for photoprotection. Trends Plant Sci 2005, 10:166-169.
  • [121]Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET: Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 2008, 319:330.
  • [122]Martin MN, Tarczynski MC, Shen B, Leustek T: The role of 5'-adenylylsulfate reductase in controlling sulfate reduction in plants. Photosynth Res 2005, 86:309-323.
  • [123]Vlad F, Spano T, Vlad D, Bou Daher F, Ouelhadj A, Kalaitzis P: Arabidopsis prolyl-hydroxylases are differentially expressed in response to hypoxia, anoxia and mechanical wounding. Physiol Plant 2007, 130:471-483.
  • [124]Baier M, Noctor G, Foyer CH, Dietz K-J: Antisense suppression of 2-cysteine peroxiredoxin in Arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism. Plant Physiol 2000, 124:823-832.
  • [125]Riccardi F, Gazeau P, de Vienne D, Zivy M: Protein changes in response to progressive water deficit in maize quantitative variation and polypeptide identification. Plant Physiol 1998, 117:1253-1263.
  • [126]Cramer GR, Van Sluyter SC, Hopper DW, Pascovici D, Keighley T, Haynes PA: Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit. BMC Plant Biol 2013, 13:49.
  • [127]Chaves MM, Pereira JS, Maroco JP: Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 2003, 30:239-264.
  • [128]Hunt L, Mills LN, Pical C, Leckie CP, Aitken FL, Kopka J, Mueller-Roeber B, McAinsh MR, Hetherington AM, Gray JE: Phospholipase C is required for the control of stomatal aperture by ABA. Plant J 2003, 34:47-55.
  • [129]Prado K, Boursiac Y, Tournaire-Roux C, Monneuse J-M, Postaire O, Da Ines O, Schäffner AR, Hem S, Santoni V, Maurel C: Regulation of Arabidopsis Leaf Hydraulics Involves Light-Dependent Phosphorylation of Aquaporins in Veins. The Plant Cell Online 2013, 25:1029-1039.
  • [130]Ajjawi I, Coku A, Froehlich JE, Yang Y, Osteryoung KW, Benning C, Last RL: A J-like protein influences fatty acid composition of chloroplast lipids in Arabidopsis. PLoS One 2011, 6:e25368.
  • [131]Andrews M, Huizinga DH, Crowell DN: The CaaX specificities of Arabidopsis protein prenyltransferases explain era1 and ggb phenotypes. BMC Plant Biol 2010, 10:118.
  • [132]Banci L, Bertini I, Luchinat C, Turano P: Electron Transfer, Respiration, and Photosynthesis. In Biological Inorganic Chemistry: Structure and Reactivity. Edited by Bertini I, Gray H, Stiefel EI, Valentine JS. USA: University Science Books; 2007:229-261.
  • [133]Barkla BJ, Vera-Estrella R, Maldonado-Gama M, Pantoja O: Abscisic acid induction of vacuolar H + -ATPase activity in Mesembryanthemum crystallinum is developmentally regulated. Plant Physiol 1999, 120:811-820.
  • [134]Bazakos C, Manioudaki ME, Therios I, Voyiatzis D, Kafetzopoulos D, Awada T, Kalaitzis P: Comparative Transcriptome Analysis of Two Olive Cultivars in Response to NaCl-Stress. PLoS One 2012, 7:e42931.
  • [135]Beligni MV, Mayfield SP: Arabidopsis thaliana mutants reveal a role for CSP41a and CSP41b, two ribosome-associated endonucleases, in chloroplast ribosomal RNA metabolism. Plant Mol Biol 2008, 67:389-401.
  • [136]Brandt U: Proton-translocation by membrane-bound NADH: ubiquinone-oxidoreductase (complex I) through redox-gated ligand conduction. Biochim Biophys Acta 1997, 1318:79-91.
  • [137]Bray EA: Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 2004, 55:2331-2341.
  • [138]Çakır B, Olcay AC: Molecular cloning, phylogenetic analysis, and expression profiling of a grape CMP-sialic acid transporter-like gene induced by phytohormone and abiotic stress. Gen Genom 2013, 35:225-238.
  • [139]Dietz KJ, Tavakoli N, Kluge C, Mimura T, Sharma SS, Harris GC, Chardonnens AN, Golldack D: Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 2001, 52:1969-1980.
  • [140]Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M: Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell Online 2000, 12:393-404.
  • [141]Golldack D, Li C, Mohan H, Probst N: Gibberellins and abscisic acid signal crosstalk: living and developing under unfavorable conditions. Plant Cell Rep 2013, 32:1007-1016.
  • [142]Gómez J, Sanchez-Martínez D, Stiefel V, Rigau J, Puigdomenech P, Pages M: A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature 1988, 334:262-264.
  • [143]Goyer A, Collakova E, de la Garza RD, Quinlivan EP, Williamson J, Gregory JF, Shachar-Hill Y, Hanson AD: 5-Formyltetrahydrofolate is an inhibitory but well tolerated metabolite in Arabidopsis leaves. J Biol Chem 2005, 280:26137-26142.
  • [144]Gross EL: Plastocyanin: Structure, Location, Diffusion and Electron Transfer Mechanisms. In Oxygenic Photosynthesis: The Light Reactions. Edited by Ort DR, Yocum CF, Heichel IF. Netherlands: Springer; 2004:413-429.
  • [145]Guo L, Devaiah SP, Narasimhan R, Pan X, Zhang Y, Zhang W, Wang X: Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell Online 2012, 24:2200-2212.
  • [146]Ham BK, Park JM, Lee SB, Kim MJ, Lee IJ, Kim KJ, Kwon CS, Paek KH: Tobacco Tsip1, a DnaJ-Type Zn Finger Protein, Is Recruited to and Potentiates Tsi1-Mediated Transcriptional Activation. Plant Cell 2006, 18:2005-2020.
  • [147]Hardie DG: Plant protein serine/threonine kinases: Classification and Functions. Annu Rev Plant Physiol Plant Mol Biol 1999, 50:97-131.
  • [148]Hernández I, Van Breusegem F: Opinion on the possible role of flavonoids as energy escape valves: Novel tools for nature's Swiss army knife? Plant Sci 2010, 179:297-301.
  • [149]Ioannidis NE, Cruz JA, Kotzabasis K, Kramer DM: Evidence That Putrescine Modulates the Higher Plant Photosynthetic Proton Circuit. PLoS One 2012, 7:e29864.
  • [150]Janicka-Russak M: Plant plasma membrane H + -ATPase in adaptation of plants to abiotic stresses. In Abiotic stress response in plants - physiological, biochemical and genetic perspectives. Edited by Shanker A, Venkateswarlu B. Rijeka, Croatia: Intech; 2011:197-218.
  • [151]Jansson S, Gustafsson P: Evolutionary conservation of the chlorophyll a/b binding proteins cDNAs encoding Type I, II and III LHC I polypeptides from the gymnosperm Scots pine. Mol Genet Genom 1991, 229:67-76.
  • [152]Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K: Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Nat Acad Sci U S A 2006, 103:230-235.
  • [153]Kim J, Malladi A, van Iersel MW: Physiological and molecular responses to drought in Petunia: the importance of stress severity. J Exp Bot 2012, 63:6335-6345.
  • [154]Kim JS, Jung HJ, Lee HJ, Kim KA, Goh C-H, Woo Y, Oh SH, Han YS, Kang H: Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J 2008, 55:455-466.
  • [155]Kim S, Choi HI, Ryu HJ, Park JH, Kim MD, Kim SY: ARIA, an Arabidopsis arm repeat protein interacting with a transcriptional regulator of abscisic acid-responsive gene expression, is a novel abscisic acid signaling component. Plant Physiol 2004, 136:3639-3648.
  • [156]Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K: Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L.: identification of three ERDs as HSP cognate genes. Plant Mol Biol 1994, 25:791-798.
  • [157]Kushwaha HR, Singh AK, Sopory SK, Singla-Pareek SL, Pareek A: Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation. BMC Genomics 2009, 10:200.
  • [158]Li AD, Anderson LE: Expression and Characterization of Pea Chloroplastic Glyceraldehyde-3-Phosphate Dehydrogenase Composed of Only the B-Subunit. Plant Physiol 1997, 115:1201-1209.
  • [159]Liu F, Guo J, Bai P, Duan Y, Wang X, Chen Y, Feng H, Huang L, Kang Z: Wheat TaRab7 GTPase is part of the signaling pathway in responses to stripe rust and abiotic stimuli. PLoS One 2012, 7:e37146.
  • [160]Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Songa CP: An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 2006, 18:2749-2766.
  • [161]Mishra M, Das R, Pandey GK: Role of ethylene responsive factors (ERFs) in abiotic stress mediated signaling in plants. e-J BiolSci 2009, 1:133-146.
  • [162]Munnik T, Irvine R, Musgrave A: Phospholipid signalling in plants. Biochim Biophys Acta-Lipids and Lipid Metabolism 1998, 1389:222-272.
  • [163]Noir S, Bömer M, Takahashi N, Ishida T, Tsui TL, Balbi V, Shanahan H, Sugimoto K, Devoto A: Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand-by mode. Plant Physiol 2013, 161:1930-1951.
  • [164]País SM, Tellez-Iñón M, Capiati DA: Serine/threonine protein phosphatases type 2A and their roles in stress signaling. Plant Signal Behav 2009, 4:1013-1015.
  • [165]Pedone KH, Der CJ: Small GTPase. In Encyclopedia of Biological Chemistry. Edited by Lennarz WJ, Lane MD. USA: Academic Press; 2013:242-248.
  • [166]Pichersky E, Jansson S: The Light-Harvesting Chlorophyll a/b-Binding Polypeptides and Their Genes in Angiosperm and Gymnosperm Species. In Oxygenic Photosynthesis: The Light Reactions. Edited by Ort D, Yocum C, Heichel I. Netherlands: Springer; 2004:507-521.
  • [167]Quilliam LA: Ras Family. In Encyclopedia of Biological Chemistry. Edited by Lennarz WJ, Lane MD. London, UK: Academic Press; 2013:12-16.
  • [168]Ribas-Carbo M, Taylor NL, Giles L, Busquets S, Finnegan PM, Day DA, Lambers H, Medrano H, Berry JA, Flexas J: Effects of water stress on respiration in soybean leaves. Plant Physiol 2005, 139:466-473.
  • [169]Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K: Arabidopsis Cys2/His2-type zinc finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 2004, 136:2734-2746.
  • [170]Saxena M, Bisht R, Roy SD, Sopory SK, Bhalla-Sarin N: Cloning and characterization of a mitochondrial glyoxalase II from Brassica juncea that is upregulated by NaCl, Zn, and ABA. Biochem Biophys Res Commun 2005, 336:813-819.
  • [171]Seidel T: Structure and Regulation of Plant Vacuolar H + -ATPase. Prog Bot 2009, 70:93-126.
  • [172]Shimazaki K, Doi M, Assmann SM, Kinoshita T: Light regulation of stomatal movement. Annu Rev Plant Biol 2007, 58:219-247.
  • [173]Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, Matsui K, Ohme-Takagi M, Takatsuji H: Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J 2003, 36:830-841.
  • [174]Thidholm E, Lindstrom V, Tissier C, Robinson C, Schroder W, Funk C: Novel approach reveals localization and assembly pathway of the PsbS and PsbW proteins into the photosystem II dimer. FEBS Lett 2002, 513:217-222.
  • [175]Torres GA, Gimenes MA, de Rosa VE Jr, Quecini V: Identifying water stress-response mechanisms in citrus by in silico transcriptome analysis. Genet Mol Biol 2007, 30:888-905.
  • [176]Tovar-Méndez A, Miernyk JA, Randall DD: Regulation of pyruvate dehydrogenase complex activity in plant cells. Eur J Biochem 2003, 270:1043-1049.
  • [177]Van Nocker S, Ludwig P: The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genomics 2003, 4:50.
  • [178]Wang B, Luttge U, Ratajczak R: Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 2001, 52:2355-2365.
  • [179]Xu C, Jing R, Mao X, Jia X, Chang X: A wheat (Triticum aestivum) protein phosphatase 2A catalytic subunit gene provides enhanced drought tolerance in tobacco. Ann Bot 2007, 99:439-450.
  • [180]Yao X, Xiong W, Ye T, Wu Y: Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis. J Exp Bot 2012, 63:2579-2593.
  文献评价指标  
  下载次数:15次 浏览次数:53次